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FOREWORD

This report was prepared for the National Aeronautics and Space
Administration by the Applied Science Associates under Contract NAS6- 2307.
~J. T. McGoogan and H. R. Stanley, of NASA Wallops Station, acted as NASA
coordinators. | ' '

The study was performed both at the Applied Science Associates and at
North Carolina State University. N. E. Huang served as project director.
The theoretical part was assisted by Professor C. C. Tung of the North
Carolina State University at Raleigh as a conslultant, Dr. N. Guttman
worked on the dispersive relatiom, and Mr. S. R. Long worked on the
capillary gravity waves interaction with currents. The experimeﬁtal part
was carried out at the North Carolina State University through a sub-
contract to Professor F. Y. Sorrell. G. V. Strum and S. R. Long also

worked on the experiments.
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ABSTRACT

This report presents the results of a one-year study of current-wave
interactions. The subjects treated include both theoretical and
experimental parts. -

In the theoretical study, three problems are discussed. The first is
the dispersive relation of a random gravity-capillary wave field. 1t is
concluded that no universal relationship can Be found for all the sea
states. The second problem is on the chénges'of the statistical properties
of surface waves under the influence of currents. The possibility of
utilizing such changes for remote sensing of surface currents is also
discussed. The third problem is on the Interaction of capillary-gravity
with the non-uniform currents.

The experimental study deals with the measurement of wave-current
interaction and trying to establish the feasibility of using such measurements
for remote sensing of surface currents. A laser probe was developed to
measure the surface statistics. In a laboratory, the possibility of using

current-wave interaction as a means of current measurement was demonstrated.
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PART I
THEORETICAL STUDIES

The theoretical study consists of three parts. The first part
discusses the non-linear dispersive relation in a random gravity-
capillary wave field. The result indicates that the dispersive relation
is a function of the energy spectrum; therefore, a universal dispersive
relationship seems impossible. The second part deals with the statistical
properties of surface waves under the influence of currents. The changes
due to currents can be used as an additional method to measure surface
current. The third part dicusses the interaction of capillary-gravity
waves with non-uniform current. A perturbation scheme is used to overcome
the difficulty of multiple values of the dispefsive xelationshiﬁ in this

range of the wave spectrum.



1. Dispersive relation for gravity-capillary waves.

1.1 INTRODUCTION

Looking over the surface of the open ocean, a casuil observer notices
a seemingly endless moving succession of irregular humps and hollows, or
- waves. These surface waves are the most common motion at the ajr-sea in-
terface. They form an oscillatory pattern and travel in all directions
and at different speeds. |

One characteristic of an oscillatory wave is its period. This quan-
tity is the time interval between passages, at a fixed point, of a given
phase of the as;i]]atibn. Its reciprocal is the wave frequency n. Since
n is a function solely of time, it can be measured relatively easily from
& point by noting the elapsed time between fhe passage of two crests.

Another characteristic is the wave length, or the distance between
particles moving in the same phase of the oscillation. The reciprocal
of this quantity is the wave number k. Since the wave travels on the two
dimensional free surface x. = {x,y), the wave length and.difectional prop-,
erties can be combined and represented by the vector wave number |
k = g(;).' Measurement of the directional wave length at infinitely many
ﬁoints 15 necessary to obfain spatial correlations over the two dimen-
sional wave number plane.

The velocity ¢ at which thé wave travels is defined as

: - -E- - : : .

Since the freguency n is non-directional and re1ative1y easy to measure,
and since the wave number k is economica]]ﬁ and logistically prohibitive
to obtain over the free surface, it would be advantageous to find a re-

lationship between n and k.



For a single gravity wave traveling in the x direction, such a re-
lationship can be derived. Consider a two dimensional spatial coordinate
system (x,z) where z is measured positi?e]y upward and the plane z = 0
represents the mean free sufface level as shown in Figure 1. Assuming
an incompressib]e; inviscid fluid; the motion can be regarded as irrota-r

tional and is thus controlled by Laplace's equation

V2 p (x,2,t) =0 , (2)

where 4 is the velocity potential and t is time. By requiring that no
motion exist at z = -h, where h isrthe water depth, and that Bernoulli's
tinearized equation

gc=%%-£— | (3)
hoid at the free surface, (2) can be solved for ¢. " In (3), g is the
gravitational acceleration, p is the pressure at the interface, p is the

density of the water, and ¢ is the oscillatory surface elevation

z{x,t) = a cos(kx - nt) : _ | (4)

where a is the wave amplitude. Bernoulli's equation has been linearized
under the assumption that terms of the order of the'sduare of the veloc-
ity components are negligible compared to other terms.

The solution to (2} is

cosh[k(z+h)]
sinh(kh)

'¢ = -ca sin(kx - nt) . ‘ (5)

Substituting (5) into (3), using (1), and assuming that kz<<l, i.e., a

small wave amplitude assumption,
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Figure 1 Representation of a single wave



[g - c® coth{kh)]c = - 2| L (6)

p 'g=z

If capillary waves are also included, the effect of-surface tension

must be considered. The difference between the water pressure p and the
atmospheric pressure Pa at the interface is a result of surface tension

Such that
: 2

AR | (7)
X
where y is the ratio of the surface tension to the water density. Equa-
tion (7) has been linearized by considering terms of the order of the
square of the gradient of the surface elevation in the representation of
the surface curvature to be negligible compared to other terms. The at-
mospheric pressure is assumed to be constant, and the free surface g =0

fs taken as a reference level at which p = 0. In this situation P, = 0

since the surface tension term vanishes, Thus,
2

pe-opy 2%, - (8)
aX

Substituting (4) into (8) and then (8) into (6) and rearranging,
2 2 . .
g+ vk s ¢k coth(kh) . - (9)

For deep water waves, h is Jarge and asymptotically

coth(kh) = 1 _ (10)
so that - '

g eykec . . (1)

Equation (11) is the linearized relationship for the speed of a
single wave under the restoring influences of gravity and surface tension.

— e
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It is depicted graphicé]]y in Figure 2. The speed is a function of the

wave length and thus represents the dispersion of the wave. Substituting

(1) into (11) results in the dispersive relationship as a function of

nand k,
2 3 ' '
‘n =gk + vk . ' (12)

Equation (12) is graphically depicted in Figure 3.

It is important to note that (12) is in reality only approximately
true since just linear terms are considered. Cole (1968) discusses the
general case of periodic motions of s1ightly non-linear.oscillations.

He treats various physical problems that are characterized by the pres-

ence-of a small disturbance which acts over a long time. He shows in

his non-linear asymptotic expansion of the solution to these oscillatory
problems that a frequency shift from the linear solution will occur, and

that this shift is generally a function of the amplitude of the oscil-

-~ Yation.

Becoming more specific, Kinsman (1965) dfscusses the non-linear ex-

pansions of the phase speed for single gravity and capillary waves. For

gravity waves, the third order expansion includes a perturbation on the

linear phase speed that is a function of- the square of the amplitude.

The capillary wave higher order solution also includes a perturbation on .

the linear phase speed that is a function of the square of the amplitude.

Using (1) to transform these results into frequencies, it is found that
even though the restoring forces to the oscillatory waves are differenf,
both the gravity Snd capillary wave frequencie§ will exhibit shifts from
the linear solution that are dependent upon the square of the amplitude

of the waves.

RS
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Comparison of the linear dispersion with observed data was made by
Longuet-Higgins et al. (1963) for gravity waves with frequencies up to

4 rad sec'1.

They found that the waves appeared a little shorter than
those predicted by 1inear theory. The mean increase in the observed wave
ﬁumber is about 10 percent. The authors note, however, that they are
skeptical of the calibration of the instruments. In addition, the buoy
used has a diameter that is about one-third the shortest wave length.
Nhen.the buoy is located near the crest or trough of the shorter waves
in the range of the experiment, it will not completely rest on the water
surface and slope measurements may be inaccurate. The resulting wave
numbers may therefore be inaccurate. These possible errors cast some
doubt on the validity of the 10 percent difference between the observed
wave numbers and those suggésted by linear theory.

Yefimov and Khristoforov (1971) also compared the linear dispersion
with observed data for gravity waves with frequencies up to 4 rad_sec'1.
Their comparison is based on measurements of the velocity spectra at 1 m
and 3 m Be]ow the surface. They show that for frequencies below 2.5
rad sec'-l the Qaves are slightly shorter than those suggested by linear

1, the waves are longer than suggested by

theory. Above 2.5 rad sec”
linear theory. They emphasize, however, that small deviations from the
Tinear relationship in the low frequency range can be caused by the re--
cording by the measuring equipment of harmonics of the principal oscil-
lation. Additionally, the authors point out that the large deviations
between the observed data and the linear theory at frequencies near 4

1

rad sec  are the result of the high frequency turbulent regime of the

velocity spectra.
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Grose (1971) and Grose et al..(1972) measured wave heights relative
to a buoy for gravity waves with frequencies up to about 4 rad sec'?.
It is shown in these papers that the linear dispersion suggests wave
numbers that are too large when compared to .values computed from the
wave height measurements. In other words, the observed wave numbers
are smaller than those predicted by linear theory. The authors state,
however, that the measuring technique does not differentiate between
fundamental waves and harmonics. A1l wave components a?e treated as
fundamentals so that erroré in the observed dispersive relationship do
exist.

Comparison between the linear and observed dispersion in the capil-
. lary wave range has, unfortunately, not been made. Experimentation in
this area needs to be accomplishéd and should provida very worthwhile
results. |

Linearizing the governing equations and boundary conditions de-
creases the reality of the syrface motion but greatly simplifies fhe‘
mathematics since the pr1nc1p1e of superposition is applicable. Any
_ linear combination of soTut1ons to the equations is itself a solution.
For example, consider two waves of equal amplitude but stightly differ-
ing frequencies and wave numbers traveling in the same direction. Mathe-

matically,

L]
n

a cos(klx - nlt) (13)

a cos(k x - n t) (14)
2 2

-
i




£

k =k, n =n _ (15)

k -k <<k, n -n <<n . (16)
1 2 1

Each wave travels at its own phase speed. When they meet, however, they
interact to form a new wave.

tz
3 1 2

(k. -k Jx  (n_-n )t (k, +k )x
2a cos[ 4 — - =25 h J cos [-—i?—é___

[a
f
o

(n1+n2)t]

> (12)

From {15) and (16), the argumént of the first cosine function of (17) will

be small. This term thus serves as a slowly varying amplitude modulator

of the second cosine function or basic wave. writing

(k. -k.)x (n_-n )t . '
. _ 2 1 2 :
a = 2a cos[ 7 - = (18)
and )
k., +k n,n
M1t R B . _ ,

{17) can be restated'as

.c-

, =2 cos (k,x - n,t) . ' (20}

Since k, and n, must satisfy the dispersion depicted in Figure 3,

2 3 -
n, = gk gtk _ | (21)

11
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or
n.+n, 2 k_ +k k.tk_ 3 ‘
(2 = 0 (5B + 4 (LD | (22)

Obviously, from (22), even though the new wave was produced from the sum
of ¢, and z,, it will not be dispersed according to the summation rela-

tionship

2 3 3
n, +n, = g(k+k ) + v(k1+k2) . (23)

The addition of the two sinusoids as seen in Figure 4 begins to
show some of the proberties of -ocean waves. By adding together a large
number of -sinusoids and by considering the directional properties of the
waves over the two dimensional sea surface plane, the irregular pattern
of the ocean surface can be approximated. The true random surface, how-
ever. must he describad by considering Eoth the linear and ihe non-iinear
parts of the governing equations. .

The importance of non-linear interactions for gravity waves was dis-
cussed by Phillips (1960a, 1968). He showed that the inferaction of
three primary waves can cause a resonance condition to exist so_thaf
secéndary waves will be generated. A weak energy transfer from the pri-
mary to the secondary waves will also occur. McGoldrick {1965) studied
'ihteractions among capillary and among capillary and gravity waves and
found that resonance and thus secondary wave generation and correspond-
ing energy transfer occur with certain triads of waves. Longuet-Higgins
{(1963a) explained the non-1inear mechanism for the fermation of capil-
lary waves on the forward face of gravity waves. He related this process

to the generation of waves by wind.
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A1l of the above studies are important éontributions to the under-
standing of surface waves. They all concern non-linear ﬁnteractfons, but
the development of each theory relies on the assumption of the validity
of the linear dispersive relationship (12). The resonance models in
ﬁarticular are critically dependent upon this assumption. The re1iénce
upon the linear dispersion is true not only for the three papers cited,
but for virtually all studies involving non-linear interactions. If (12)
is not a good representation of the true dispersion, then all of these
papers--some of which are major contributions-—may be improved.

The present study investigates the dispersion of non-linearly in-
teracting random pelagic gravity and capillary surface waves. A quanti-
tative analysis is given, and the deviation from linear theory is exam-
ined in terms of the non-linear interactions.

Not only is the non-linear dispersion important in the assessment
of major theories that lead to the understanding of random waves, but it
is also important in determining the transformations between wave number
and frequency spectra. An accurate transformation is necessary in view
of fhe economical and 1o§istica] problems of wave number measurement in
the random ocean and of the relative ease of frequency measurements. ?

The discussion so far has related to wave-wave interactions. Wave- :
current interactions, however, also affect the disperﬁion; The change in
wave number and amplitude when short waves ride on long swells was rigor- ; -
ously calculated by Longuet-Higgins and Stewart (1960%. The changeé in :
wave characteristics when waves interact with currents was also noted by - ?

Whitham (1960, 1962). Since an accurate transformation between wave number
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and frequency spectra is desired, the present study additionally describes

the modification needed in the dispersion when the waves are under the in-

fluence of current. Although the modification is given only for a single

wave, the logic of the derivation is valid for random waves.

P

o ——

e
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1.2 SPECIFICATION OF THE RANDOM SEA

The detailed pattern of the waves on the sea surface is random in
the sense that it varies without regularity in both space and time. The
motion of the waves obeys certain known dynamical and kinematical restric-
fions. The randomness, however, must be treated statistically. The sta-
tistical measures of the motion can then be used to ascribe some order to
the surface structure. It is necessary, therefore, to specify the dynam-
ical, kinematical, and statistical properties of the random .sea surface.

Consider a rectangular coordinate system with the z-axis measured
positive vertically dpward with the plane z = 0 at the mean free surface
level. Any point in this system can be_descfibed by z énd a horizontal
position vector X = (x,y}. Under the standard assumptiens of an incom-
pressibie, inviscid fluid, the motion can be approximated as irrotationé1.

This -motion is governed by Lapléce's equation

2 .

v ¢(X,2,t) = 0 | (24)
where ¢(§;z,t) is the velocity potential as a function of X»z and time t,
If 4t is further assumed that the random wave field is statistically
stationary with respect to both time and space and that there is no
motion at z = -w, 'Phillips (1960a) showed that the solution to (24) is

¢(x,2,t) = i,{ dA(k,n)expl|k|zJexp[i(kex - nt)] - (25)

where dA(k,n) is any complex valued random function of the horizontal
wave number vector k and frequency n. The velocity potential is rep-
resented as a Fourier-Stieltjes integral with the integration over all

wave number-frequency space.
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Under the same assumptions Phillips (1960a) showed. that the surface

-

elevation z{x,t) can be represented as

2(x,t) = {TdB(k,n)exp[i (k- - nt)] - (26)

where ¢ is the displacement from the mean free surface 7 = 0 and ds(k,n)

is another complex valued random function. Since z(x,t) is real,

It

t(x,t) = [TaB(kn)expli(kex - nt)]

ipdB*(kun)expl-i(k+x - nt)]

cadB*(-k,-n)exp[i(k-x - nt)] o (27)

where dB*(k,n) is the complex conjugate of dB(k,n)..
A relationship exists between dB(k,n) and the directional wave energy

spectrum X(k,n) such that

@Bk on Tk an ) = [ X(kgungddigng  4F 1 = §

0 otherwise | (28)

where the overbar indicates an ensemble average. The spectral function
is perhaps the most common representation of the wave field., In order
to relate quantities other than the surface e]evatioq.to the wave spec-
trum, it is necessary to find a relationship between dA(k,n) and dB(k,n).
This can be done from the kinematic boundary condition at the free sur-

face.
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If the position of the free surface is specified by ¢, the total

derivative of g is -

dv _ 3z, .
t et 9% " (?g)

where Y = (a/ax{ 9/ay) is the horizontal gradient operator, q is the
horizontal velocity vector, and the subscript z indicates measurement

at the free surface. For irrotational flow (29) becomes

5E = Ge/az) - (90) Fye (30)

Equation (30) represents the free surface kinematic boundary condition.

Substituting (25) and (26) into (30),

- (31)
The exponential term.in (31) invo]ving-the‘surfdce slope |k]z can be

expanded in a Taylor series around ¢ = 0 such that

. 2 . '
expllk|cl = 1+ [klc + 3L|k[c] + ... %T{]g[;]i ..+ R (32)

The convergence of the series for gravity waves can be determined by
noting that the maximum steepness a gravity wave can have before it
breaks is .142. This value was determined by Stokes (1880), and accord-
ing to Kihsman_(]965), it may be taken as an established value., 1In terms

of wave slope, the maximum vaiue is one half the maximum steepness, or

il
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.071. Terminating (32) after only two terms results in a maximum error

R

2 )
R = %{.071) exp(.071) = .003 . (33)

This error is negligible.
For capillary waves, Crapper (1957) found that the maximum steep-
ness can be .730. The maximum siope is therefore .365. The maximum

error if only the first two terms of (32) are used is then

, |
R = 2(.365) exp(.365) = .03 . (34)

IT the first three terms are used,

R= (1/6)(.365)3exp(.365) = .012 . | : (35)

Although these errors are largzsr than that for gravity waves, they are
still small.

7 Using the series expansion for exp[lk|z] fruncated after the first
thfee terms, the relationship between dA(k,n) and dB(k,n) is found by
successive approximations. Details‘of the operation, following the
metﬁod developed by Huang (1971} in his second order study of Stokes
drift in a deep water random gravity wave field, are in Appendix A. To

the third order the ke]ationship is

. ke(k - k
dA(k,n) = - 1 dB(k,n) + ) [ | ———— }(n - n)dB(k - k ,n - n))
' T -k '
@k n)+il /S (n -y =) T+ k-1
1’ Knkn, [ k] 2'= 1 22
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'(E-_IEI-IS)-~ - -
-l -k -kl
dB(k - k, - k,s n-n; - n,)dB(k,,n,)dB(k,, n,) (36)

A dynamic boundary condition on the free surface is imposed by the
requiremént that.the pressure on the two ﬁides of the surface differ only
as a result of surface tension. From Bernoulli's non-linear equation,
the pressure in the water at the free surface is given by

, |
P 1 -
ot out (ae/at)  +{ve) =0. | (37)

The difference in pressure resulting from the surface tension can be

written as _
.2 :
p=p, - ov(v,0)[1 + (v,0) 1°(%/2) (38)

where the second term on the right represents the contribution from the
surfacé tension. As in the linearized equations, the atmospheric pres-
sure is assumed to be constant. If the free surface ¢ = 0 is taken as

a reference level at whiéh p =0, then Pa = 0 since the surface tension
component vanishes. The resulting dynamical free surface boundary con-

straints on the wave motion are

. : : 2 2 .
9z = -(ag/at), - %{V¢)C +y(v )1+ (th)zl'(3/2) . (39)
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1.3 MATHEMATICAL DERIVATION AND PHYSICS OF THE
DISPERSIVE RELATIONSHIP

It has been stated that the dispersive relationship is one particular
property of gravity and capillary waves re]atiné wave number and frequency
énd that several investigators use the relationship in a form derived from
linear tﬁeory for a single wave. The present analysis describes the mean
deviation and the scattering from the simple dispersion for the more real-
istic random, non-linearly interacting waves. The analytical derivation
makes use of the full non-linear.equations for a capillary and gravity
surface random wave field and is an extension of the study by Huang {1972)
on gravity waves. ) |

The free surface dynamical boundary constraints yield an identity
from which the dispersion for a sﬁngle wave train was found. They also
provide a corresponding relation for a random wave field. Looking at
- (39), the term raised to the -3/2 power can be expanded into the binomial

series

-3/
[+ (90) 17 = b= (a/2) () + (15/8)(m )" ...

+ =(3/2) - §+ 1][-(3/2)_? j+2] ... [-(3/2) - 1] (-3/2)
J!

(vh;)2j . +R . (40)

Equation {40) is valid for

(7% <1 . - 1)
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This condition is always satisfied in light of the maximum wave slopes
permitted before breaking occurs. Truncating (40) after the First two

terms yields a maximum error

R = (15/8)(70) " . (42)

Since the maximum gradient is small in order to retain the wave stability,

the maximum error after a two term truncation is minute.

Substituting the first two terms of the binomial series (40) and the
first three terms of the Taylor series (32) in (39) and theﬁ using (25)
and (26) to substitute for ¢ and z, an expression is obtained in terms

of dA(k,n) and dB(k,n) such that

/r . 11 N -
kn99B(kandexplilk-x-nt)] = {7in[1 + Jk|g + 5 [k| ¢ JdA(k,n)exp[i(k-x - nt)
gg (el 1- kD0 + (k] + T, e
dAk.n)dAk ,n Jexp{il{k + k,)=x - (n + n )t]}

2
‘Tiﬁlki dB(k.n)exp[i{k-x - nt)] - v(3/2)

2

i _
o Englnlgznzlgl 51 gde(g,n)dB(gl,nl)dB(Ez.nz)

- exp{il(k + k + 52}-5 - {n+ n - nz)t]}

(43)

1
4
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¢ K-k,
= 1 -
: RIFUREEE

Substitution of (36) in (43) results in the non-linear third order dis-
persive relationship for random gravity and capillary waves |
2
2 .
g+ ylk|® - o+ = ﬁ ﬁ f1dB(kysm)explik-x - n t)]
- ~1'1
- i i n FodBlkyon JdB(k,un Jexplil(k, + k)
~1~1-2~2 _
el 1777 7f ) _
% ('n1+ nz)t]} “2knkn fadB(El ;.Ez’nl nz)
| ~11<2 2
dB(Ez,nz)exp[i(gl-g -'nlt)] (44)
 where
2 ke(k + 51) p v . 1 /e 5'81 \ P,
fl-n - IEH§+I_<1|H‘“+'“'1’ Y -TE—I—I‘-—ll—frlﬁl \43)
] n(n+n +n) Lok + 24 )ok - Ktk +k)e(k+k )k +k)k
2 Jk+ k, + k[ [2'- - ik +k, k]
= = =2l b 212
(’5 + El)'k 1 2 1 F '5"51
I SR LR LIRS 3 L 131
: ] (5 + ISZ)'IS]_ ] (15. + Ez)'g
(Jkl + Ik, Doany + 5 [ "TKF K, TR 13 nn,
2 -
+ (3/2)v|k] k. °k, (46)
] ki-(k) - k) n{n, - n,) (47)

Details of the mathematics of the derivation are given in Appendix B.

. -

S

. g
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Equation (44} is the most general form of the dispersive relation-
ship for a random sea surface through third order interd&fions. It is a
function of both space and time. If all the non-linear terms on the
right hand side are neglected, and if only a single wave train is con-
sidered, the ffequent]y used simple relationship (12) is recovered. -

The deviation from the linear theory 1s‘giveh by the right hand side
of (44). The mean deviation is easily computed by taking the mean of
each term of the deviation. The first term represents a random scatter-
ing of the sﬁrface elevation and has a zero mean.

It is seen from (27) that

dB(K.n) = dB*(-k,mn) L e

The mean Fourier-Stieltjes components in the third term can then be

written as

a8Tk, - K,on, - n JaB(k ,n] = @Bk - k0 -1 JaB(-K A )

- (49)

and from (28)

aBTK, - Ky, - ny)dBr(K,5-n,) = X(k,.n,)dk,dn, if k =n =0

0 otherwise. . (50)
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If 51 =n = 0, then (47) becomes zero. The mean of this third term
therefore vanishes. -
Equations (48) and (28) can be used to determine the mean of the

second term. Thus,

dB(gl,n{)dB*(-gz,-nz) =. X(El,nl)dgldn1 if 51 + 32 =n, +n,=0

0 otherwise . (51)
Substituting k, = -k,, n, = -n, into (46) yields a non-zero term
. 2 ke(k - k,)(k - k )k (k + k_ )k
T rLLE § TR Ko imth o PTG 25 sl Ton(n +on)
2 T TRT (2 2D TR TR ]

+1_[] k=K % - Sk 1P (52)
2 [k - k[ik L3 |
It s seen that the mean of the second term is therefore non-zero.
The resulting mean non-linear dispersion is (
g+ v|k|? - LA Y g o )dk dn . (53)
- TET Elnl 272 A1 =101 _

The right hand side of {53} represents the mean non-linear deviation
from linear theory in terms of the spectral function. This expression
is greatly simp]ified if only unidirectional waves are considered.

Equafion (23) reduces to

[ o
T
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2

g+ vk’ - - - k . 7 302 k, *+on (K + k) - (3/2)vk%2]

X(kl,nl)dkldnl. (54)

Since the spectral function is even and n s k1 are odd functions, (54)

becomes
g+ vk - - - -ilgl[nnlkl - (3/2)vk°k;1xX(k a0, )k ydn,  (55)

The mean squared random error is a measure of the variability of
the fandom scattering about the mean deviation. The right hand side of
(44) represents the deviation e from the linear theory. The mean of its
square €2, is the mean squared random error. The computation of €2 to
the third order requires that we cons1der only the first term on the
right hand side of (44) as inc]usion of the other terms will yield high-

er than third order results. Thus,

€ = i i f dB(k sn )exp[1(k X -n t)] . - (56)
The mean squared random error is arrived at by once again using (48)
and (28) to compute the mean of the square of -{56)}. The resulting ex-
pression is

I 2 . ‘
nlflx(gl,nl)dgldn1 ) (57)

m

= J
Ky
For unidirectional waves, (57) reduces to

fr
E? = nzklnlnfx(kl,nl)dkldnl. S (58}
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Anticipating the results of'the next section, the behavior of the

mean deviation and root mean squared random error can be schematically

visualized as in Figure 5. The ratio of the linear dispersion to the

non-linear dispersion is plotted against the wave frequency. It is seen
that as n incréases from the low frequency gravity waves through the
high frequency capillary waves, the mean deviation and random scatter-
ing first increase in magnitude and then decrease in magnitude. The in-
flection points of the curves are found in the transition zone between
the gravity and capillary wave ranges.

The reversal of the mean effects can be seen by looking at the term
in brackets in (55). The first combonent dominates in the gravity wave
range since in this range the square of the wave number is much less than
the wave number itself. In the capillary wave range, however, the wave
number is large so that its square is even larger. The second term
therefore dominates in this range. Since the two terms are of opposite
sign, their effects will be opposite.

The random fluctuations are a function'of the quasi-Eu]érian veloc-
ity components. The schématic depiction shows that these random fluc-
tuations are maximized in the transition zone between the gravity and
capillary waves. This curve is based in part on measurements of veloc-
ity spectra by Yefimov and Khristoforov (op.cit.). These authors show
that in the gravity wave range the random, turbulent type velocity com-
ponents become increasingly stronger as the transition zone is approached.
No measurements of velocity spectra have been made in the capillary wave

range, but Phillips (1969) discusses integrated frequency spectra in this

s g v A ke

TR N
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GRAVITY WAVES : I TRANSITION ZONE CAPILLARY WAVES

Figure 5, Schematic of the effect on the linear dispersion of the non-linear mean dewatlon {
squared random error (‘-— -—)

.
) and root mean

8z
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range. He states that the maximum spectral“balueﬁ dégur in the lowest
frequencies, or those frequencies near the transition zone, At Higher ,
frequencies, the spectral values decrease rapidly because of the in-
creased effect of viscous dissipation of the capillary waves. Thus, as
the frequency increases, the wave energy becomes less and therefore the
velocity components decrease in magnitude.

The dispersion by definition relates the velocity at which a wave
travels to the wave length. This has the effect of sorting the waves
as they travel. For simplicity, consider three gravity waves of dif-
fering lengths propagating unidirectionally from a point X, at time to.
Since the waves are traveling at different speeds, at a later time t;
the next fastest at x

the fastest wave will at at x <X and the slow-

1? 2

est at KySX, <X, . It is therefore seen that even though the three waves
started traveling from the same point at the same time, they will be
sorted at t).

| The linear dispersion {11) shows that tHe square of the phaée speed
is -indirectly proportional to the wave number when the wave is restored
to the mean free surfaée’]eve] by gravity and directly proportional to
the wave number when the wave is restored by surface fension. The ef-
fect of non-linear wave-wave interactions can be readily seen by look--
ing at the simplified case of unidirectional waves. Using {1}, the mean
non-linear dispersion (55) can be rewritten as

2 . 9. S S _ 21y
c k + vk + klnl[T nlkl (3/2)~rkk1]X(k1.nl)dk1dn1

e e adam b
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. o2 ¢ 5 ' ) ¥k "
o [; * 5 kon Mk Rk a0 )dk dn - (3/2) T
c 171 c
0 o
( ﬁ k X(kl,nl)dkldnl] | (59)
where cg represents the linear dispersion. If interactions did not oc-
| cur, ¢ would be coincident with c2 and the linear theory would suffice.

0
Physically, then, the third order mean non-linearities behave in the

sense of a débiaﬁidﬁ from the linear dispersion. They thus affect the

dispersion by changing the phase speed'c0 that results from 1inear theory.
Looking at the mean deviation, the first integral on the right hand

side of (59) is an expression for the mean random ocean quasi-Eulerian

velocity as derived by Phillips {1960b). This velocity is the mean of

£

=

ree surface for

0

the horizontal component of the fluid velocity at th
a fixed point (x,y).. It is a quasi-Eulerian quantity'in that it is meas-
ured at a fixed point on the projection of the free surface, but the
verticaI‘coordinate is allowed to move up and down with the free sur-
face. A similar formula wa§ derived by Longuet-Higgins and Phillips
(1962) from a genera1iza£ion of the interactions between two waves. The
difference betﬂeeh the two expressions is a factor of two. Phillips
(1960b), however, showed that the mean Eulerian velocity is one-half the
Stokes drift. The Stokes drift is the mean velocity following a fluid
particle an& is by definition a Lagrangian property. Since the present
study is based on an Eulerian reference frame, the first integral appears

reasonable.
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The second integral in (59) represents the mean square of the ratio
of the surface elevation to the wave 1engtﬁ. It is multiplied by the
surface tension and is thus important in the capillary wave‘range. This
term also appears reasonable in view of Crapper's {op.cit.) exact solu-
.tion to the finite amplitude non-linear single capillary wave problem.
He showed that the square of the phase speed is influenced, as in the
present study, by a term proportional to the square of the ratio of the

surface elevation to the wave length.



1.4 QUANTITATIVE ESTIMATES OF THE NON-LINEAR DISPERSION

The effect of the mean non-linear deviation can be quantitatively
assessed if the spectral function is known. An order of magnitude esti-
mate can be obtained by using the equilibrium range spectrum. For grav-

ity waves assume the equilibrium spectrum givén by Phillips (1958}.

X(k,n) = B 50k - D | (60)
nS g - Bl
for _
. 1 B .
k<<|<Y = (g/v) /2, neen, = (493/7)1/4 | (61)

where B is a universal constaﬁt and & is the Dirac delta functién. The
constant 8 has been measured experimenté]]y by Pferson (1960}, Burling

(1959) and Longuet-Higgins et al. {op.cit.). An average value is 1.2 x
10°%. For capillary waves Phillips (1969} gave an equilibrium spectrum

based on dimensional considerations such that

. ' 2
- /3
CX(k,n) = BX 5 (k3. D2 | - (62)
n'/? Y
for
k <<k<<k » N _<<n<<n (63)
Y v Y \

where 8° is another constant, and k, énd n, are the cut-off wave number
and frequency, respectiﬁely, at which viscous effects dominate. Cox
(1958) measured a constant for frequency spectra of the wave slope.
Phillips (1969) showed that this constant could be useﬂ to approximate
8° as 10~2. Wu (1972), however, showed that this value may be in error

by a factor of two.
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In the gravity wave range the surface tension is unimportant com-

pared to gravity so that after substituting (60) into (59}

' 2
2 _ .2 cee” S J .4 :
c col:] + = K o N kldkzdn:J (64)
c 1 .
0
where
2
ny = gk, . : (65)

Using (65) and integrating (64) over the gravity wave range and noting

that -
2 _ ‘ o :
¢ = g/k _ | (66)
then
C2 = Ctz)l—.! + ..E..B_&.-I
2
= cg [V +en/n] . (67)

Equation (67) shows that the mean phase speed of interacting waves will
be less than that predicted by linear thory, and that the difference
will depend on the ratio n/n,. ' - - |
Examining this result in terms of wave nﬁmber and frequency, sub-
stitute (1) and. (66) into (67} and reérrange so that
ok = n?[1 + (8n/n,)]" . - (68)

Expanding the multiplier of n® in a truncated binomial series,

1+ (8n/n)]""= 1 - Bn/n, . (69)
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Hence

gk = nZ(1 - 8—2— X . (70)
1

The error in (69) is negligible since n and n, are of the*same order and
B is small. Equation (70) clearly shows that forﬁinterécting gravity
waves, an increase in wave number resu1ts'from an increase in frequency
below that predicted by 1inear theory. Furthermore, the effect of the
interactions increases as the ratio n/n; increases. This result agrees
with Huang (1972) and is consistent with Stokes' (1847) theoretical
so]ution.for gravity waves. Additionally, the result agrees with the
observed data discussed earlier. |

In the capillary wave range the gravity terms are unimportant com-

pared to the surface tension terms so that after substituting (62) into

(59},

2 . .2 Ao e 2/3 -4/3 s/3  _7/3 o
¢ = ¢ {1 f (8 /co)klnl[cY nT k- (3(2)7 kn,” " k]
dk,dn,} : - o )
where ,
n? = Yk3 . ' (72)

1 1

Using (72) and integrating (71) over the capillary wave range,

1
¢ = c2 11 - (87/c2) [(3/2)vkInn, - 3ey /0, '] (73)

The mean effect of the interactions on the phase speed can be assessed

after the sign of
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(3/2)ykIn n - 3c~f1/3n11/3 ' (74)

1s determined. Using (1), dividing by 3y and rearranging (74) is re-
written as

IERA n o
7N In W2/ 7 - , - (75)
y K .

The capillary wave range in which the equilibrium spectrum is valid
begins at n = 100 sec‘1 as shown by Phillips (196?) and at kY = 3.6 e
as shown by Wu (op.cit.). The upper limit to the rahge is determined by
the energy dissipation resulting from molecular viscosity. Wu (op.cit.)
showed that the cut-off wave number k413 °Giis The corresponding
cut-off frequehcy n, < 1,000 sec™’. Additionally, n, is the lower bound
of the equilibrium range so that n is always less than or equal to n.
Using these iimiting values, the first term in (75) varfe§ from .50 to
.35 as n, increases and the second term varies from .44 to .34 as n in-
creases. Equation (75) and therefore (74) is thus positive. It should
be noted, however, that as the viscous dissipation of the wave energy
becomes more pronounced, i.e., at the upper limits of the range-for which
the equilibrium spectrum is valid, the difference between the two terms
becomes smaller and smaller. Since (74) is positive, the square of the
phase speed c? in (73} will be less than that for the situation in which
no interacfions are 1nv61ved, but .only by a small amﬁunt.

In terms of wave number and frequency, for capillary waves

¢ = vk . (76)
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Substitdting (1) and (76) into (73) and rearranging,

. ‘ 1/3 . 173 L
Yk°I1 - (372871 nd + v k(seran, M) - 02 =0, (77)
. . . . 1/3 .
This equation is a cubic expression of v ° k and can be solved in terms
of n by using the formulas and procedures analogous to those outlined in

Appendix C. Cubfng the solution results in

/2. 2/3 1/2.1/3 - 1f2.1/3 /2. 2/3
D + D

vk =2r+3[(r+D ) r - ) {r+ ) {r-D")7 7]
(78)
where
re= %-nz[l - (3/2)871n nl]'1 | B -~ (79)
and 1 |

D= B'3n3n1[1 -'(3/2)B'Tn nl]"3 + %ﬂ“[1 - (3/2)871n nlj'2 . {(80)

..Since 8~ is such a small quantity, the first term in (80) is negligible

compared to the second term. Thus, D is-approximated by

D = 2n°[1 - (3/2)8"In n 172 . B (81)
Rewriting (78) and using the approximated value for D,

1/3 1/3

1/3
/ p}/%)1/3

wear 4302 - D) 00r 00k (r -

= n?[1 - (3/2)871n nlj'l - 38'nn11/3[1 - {(3/2)8°1n n1]'1
Dllz

e+ 0" 4 (r - 0
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/3

i1

- 5
nz[l - (3/2)8~°1n nl] b . 38°n

n11’3[1 - {3/2)8-1n nl]“"'3

n2{[1 - (3/2)8-In "1]-1 - 38’(n1/n)1/3[1 - {3/2)8-1n nl]_u/a

(82)
Expahding the terms in brackets into binomial series which are truncated

so that only terms of the order of 8” or larger are retained,
3 2 1/3
vk¥ = n°[1 + (387/2)1n n, - 35'(n1/n ) IR (83)
The ervor from the truncation of the binomial series is of the order of

8-%. This is negligible compared to the other terms in (83). It has al-

ready been ascertained that

[

= In n - (nlln)ll3 > 0 ' 7 (84).

since in the capillary wave range the logarithmic part will always be
greater than unity while the ratio will always be less than or equal to
unity. Therefore, from (83) it is seen that if the frequency is increased,
the non-linear interactions will have the mean effect of increasing the
wave number above that which is predicted by linear theory; Furthermore,

the effect becomes greater as n. and the ratio n/n  increase.

1

The mean squared fandom scattering defined by (58) can be inter-
preted as a measure of the random deviation about the mean scattering.
It is analogous to a variance in the statistical sense. Its square root
is analogous to a standard deviation. A large value indicates a wide

spread of data points about the mean while a small value indicates a

close cluster of points about the mean.

-
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Equation (58) can be investigated by looking at the integral func-
tion. This term represents the mean squared surface velocity spectrum,
where ' the velocity is equivalent to the quasi-Eulerian vé}ocity discussed

~earlier in conjunétion with the mean scattering. The root mean squarea
error, (EE)I/Z, theanepresents a mean of the jindividually unpredictable
random variations of the quasi-Eulerian velocity data points about the
mean quasi-Eulerian velocity multiplied by the constant n.

The unidirectional non-linear effect on the square of the phase
speed can be represented in terms of the mean deviation from linear
theory plus the random scattering. Combining the square root of (58)
with (55) and then substituting (1) into the. combination,

2 _ 2
c® =c, {1+ (c/co 2

7 kyn Xk, ony Yk dn, - (3/2)K-
HE : 0

L2 2 15 r .2 ' 1/2 '
k1n1k1x(k1'"1)dk1d"1 + (t:/co) Elnlnlx(kl,nl)dkldnl] - (85)

Quantitatively, all components of (85) except the last one, co-z(gz)IIZ
have been determined from the equilibrium spectral values.

In the gravity wave range the integral function in this last com-

ponent becomes, after using (60) and (65)

2f -3 - . |
Bg n. “dn_ . _ : (86)
n1 1 , _

Thus, for gravity waves after integrating and noting {1) and (66),

2@ =+ (s e/ am,)
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=+ (8/2)Y2(n/n)) . S (87)
Combining (87) with (67), -

¢? = cz[l + 8(n/n ) * (B/Z)I/Z(n/nl)J . {88)

Since 8 is such a small quantity, the square root of B is an order of
magnitude greater than 8. It is seen from (88), then, that the random
scattering in the gravity wave range has a far greater effect on the _
phase speed than the mean deviation. Physically, this large scattering
arises from quasi-Eulerian velocity components which have a small mean
but lafge fluctuations.

In terms of wave number and frequency, (1) and (67)‘are substituted

into {88) to yield
n? = gk[1 + 8(n/n ) = (8/2)1/2(n/n1)1 . (89)

Once-again using a truncated binomial series,

gk = n?[1 - B{n/n ) ¢ (8/2)1/2(n/n1)] . - (90)

As in the expression for the phase speed (88), the random scattering has
a greater effect than the mean deviation.

In the capillary wave range the integral function_in the last com-
ponent of (80) becomes, after using (62) and (72), '

Bv2/3 I n =1/3an . - (91)
I .

Thus, for capillary waves
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¢y~ (eN) /2 =4 (C/C§)Y1/3(3B‘/2)1/2n11/3 . | (92)
Combining (92) with (73),

¢? = 211 - (B‘/cz)[(3/2yk1n n, - 3cyl/%n 2/3]

& (e/eh) (37 /2) /2y o1/ L (93)

It is seen from (93) that the large random fluctuations of the quasi- -
Eulerian velocity components cause the random scattering to have a
greater effect on the phase speed than the mean deviation for capi1iary
waves as well as for gravity waves.

In terms of wave number and frequency, (1) and {72) are substituted

into (93) to yield, after rearranging,

K31 - (3/2)8°1n nJ+ +(173)ki[38~ (38‘/2)1/2]nn1(1/3)}

-nf=0 . ' - o (94)

Equation (94) differs from (77) only in the coefficient of v1/3k. Fol-
lowing the development of (83), it is readily seen that the cube of the

solution of (94) for v!/3k is

vk® = n?(1 + (367/2)In n_ - (n /n)3/3[36" & (387/2)1/2]} . (95)

As in the expression for the phase speed (93), the random scattering has
2 greater effect than the mean deviation.
The non-linear effects on the phase speed for the gravity and capil-

lary wave range is shown in Figure 6 and Figure 7. The ratio c;/c2 is
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c? n
Figure 6. Plot of %/c? vs. /n  for gravity waves showing the mean (
and random scattering {—= — )
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c,? n
Figure 7. Plot of %c? ys. /”1 for capillary waves showing the mean ( } and

random scattering { == — )
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is plotted against n/n, for gravity waves in Figure 6 and for capillary

waves in Figure 7. From (88), in the gravity wave range

11

co/c” = [1+ 8ln/n)) = (8/2)1/2(n/n )17

1 - s(n/n) ¢ (8/2)1/2(n/n,) (96)

after dsing the truncated binomial series. In the capillary wave range,

multiplying {76) by kz_gives
vk¥ = 2 (97)

Applying (97) and (1) to (95) and rearranging,

cz/c2 =1+ (387/2)Inn_ - (n/n)1/3[3s" & (387/2)/2] . (98)

In terms of the relationship between wave number and‘frequency,
Figure 8 is a gravity wave representation and Figure 9 is a capillary
wave representation of-néln2 against n/n1 where ng is the linear squared

frequency. For gravity waves

2 - | R 7-
n, = ok . - - (99)

and -for capillary waves

n§ = vk® : ~ (100)

Figure 8 is determined from (90) and Figure 9 is determined from (95).
The mean deviation as shown in Figure 6 and Figlre 8 decreases in
the gravity wave range as n/n1 increases. In the capillary wave range

the mean deviation as shown in Figure 7 and Figure 9 increases as n/n,

- —
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' n? n
Figure 8. Plot of “/n? vs. /n  for gravity waves showing the mean {

and random scattering { —— ==}
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Figure 9, Plot of © /n? Vs, /nI for capillary waves showing the mean (———)
and random scattering (— —)
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increases. This reversal can be explained by 1ooking at the integrated
mean quasi-Eulerian velocity in (59). This term is directly proportional
to n and inverser proportional to n, in the gravity wave range as shown
in (67). For capillary waves, however, this term is directly proportional
to both n and n11/3 as shown in (77). A change in n/n1 will therefore
cause the ve]ocity'in the two wave ranges to change in opposite direc-
tions.

The random scattering for gravity waves as depicted in Figure 6
and Figure & increases as n/n1 increases. For capillary waves, however,
depicted in Figure 7 and Figure 9, the scatter decreases as n/n1 increases.
These results are explained by considering the integrated quasi-Eulerian
velocity spectra from which the random errors are derived. 'In the grav-

ity wave ranos the g
1Ty wWave range the S

» 4L ¥
ectrum is computed from the sguare root of the in-

tegral function in (58) after using {60). Thus,

[y 7 n2X(k ,n )dk dn 13/2 = (8/2)1/2(g/n)) . (101)
171 .

Equation (107) shows that the velocity increases as n, decreases. For
a constant n, therefore, the velocity will increase as the ratio n/n,
increases. This causes the increasing scatter in Figure 6 and Figure 8.

For capillary waves, (58) and (62) yield
(i;glnfx(kl,nl)dkldnl]llz = y1/3(38°/2)}/2n 1/3 (102)

so that the velocity decreases as n, decreases. Thus, for a constant

n, the scatter will decrease as n/n1 increases as reflected in Figure 7

and Figure 9.
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Third Order Relationship Between dA(k,n) and dB(k,n)
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Rewriting (31)

-

b7 ~indB(k,n)expli(k-x - nt)] = £ |k|dA(k,n)expl|k|cTexp[i(k-x - nt)]

iﬁi ﬁ k,dA(k,n)dB(k, ,n;)expl|k|cJexp{il(k+k )-x - (n+n }t])

(31)

Substituting a series expansion for exp[|k|z], and using (26),

ig-indB(E,n)exp[i(g-§-nt)] = ié]¥|dﬂ(k,n)[1 + lklz + %4K|2c2]exp[i(k-5—nt)3

éiélé kek dA(k.n)dB(k ko, )1 + [k|gJexp

ALk ) ox - (nng)tT3

ff|k|dA kon)exp[i(k-x < nt)] + {77/ kI2dAk.m)dB (i n,)

- -~

explillkte,)ox - (ntn )e] %‘iﬁi Z 7 1k )3dAlkn) dB (K, ) )
) ' M2,

dB(k, on, )explil(kk +k ) -x - (ntn +n,)t] + iﬂi " . ‘.

o M

dA(Kkn)dB(k o DexpUiL(kek ) -x - (ntn )]}
dA(k ,n)dB(k LA )dB(k N, )



For the first order let

E+E1=E‘0’

For the third order let

k+k, +k, =k

- .~1 ~2

11~2 2

dB(k, .0, )dB(k, n, Jexplilk -x-nt)] +

dA(k K, ang-n, )dB(k, un) JexpLi(k, x-nyt)] +

t?‘i"‘“
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(A-2)

(A-3)

(A-4)

I L s
konolEOIdA(BO{no)eXPtv(EQ x-n,t}]
i ; Igo'gﬂsz(Bo'El’no'nl)ds(glfnl)exP[i(Eo'z"not)J

Tt Ikok, -k ]3dA(k -k, K, »n -, -n,)

; )
M (50'51) ky

l??‘-:
:5H
l7<"-\
3‘-.
a?R'H
::‘-1

o0 2

Ilfo"fl_‘le (lfo-lflnlf‘z) .lfldA( ’50-!51-52 'no"nl-nz) -

dB{k ,n )dB(k,.n, Jexp[i(k -x-n t)]

(A-5)
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Since each.éomponent of (A-5) is integrated over (go,no), only the inte-
grands of the integration over (go,no) need to be considered. After

dropping the zero subscripts, these integrands in (A-5) can be rearranged

so that
dA(kun) = - Jfr dB(k.n) - gl [lk-k, 12 + &, - (kk)]T—rdAkk,nn)
11740
dBlk,n,) - 51n152ﬂ2[§45 SARSISRIATE k-k,-k,)

TRT 9ALk-k -k, nn, -n,)dB(k .0, )dB(k, .n,) | (A-6)
Using successive approximations, to the first order
dA(E,n). & - TR-[- dB{ k n) | . _ (A-?)

To the second order, after substituting (A-7) for dA(E-El.n-nl) in (A-6),

dB[g-gl,n-nl)]dB(gl,nl)-

"~ k-(k- k
& - dB(k,n) + 1 T dB(k-k. ,n-
TF" 11mT['.<—-|f_1|nn)( 1ﬂn)

dB(gl.nl) | (A-8)
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{ontinuing the approximation, substitution of (A-8) into (A-6) yields

the third order relationship

n-n,-n,)ds(k, ,n, ?]dB(kl,nl) - é

* e ek )00 g [ =

dB(g-El-BZ,nfnl-nZ%] dB(gl,nl)dB(ga,nz) . (A-9)
Rearranging

dA(k,n) = - TE?-dB(g,n) + 1 i ﬁ

dB(k,on)dBlk,on,) . o - (A-10)
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Rewriting (39)
gz = - (29/3t), -%(w)g + y(vge)1 + (th)z]-(agz) . (39)
Expanding the term raised to the -3/2 power in a binomial series,
9 = - (3s/0t), —%{%)é + oyl - (372)(9,8)%] . (8-1)

Using (25) and (26) to substitute for ¢ and ¢,

kn gdB(k,n)exp[i(k-x - nt)] = kn indAfk,n)exp[[k|zlexp[i{k-x - nt)]

]

% o n ORI - e eRon)datk n Jesol (k] + Tk, )e]

R

exp{illk+k )ox - (mtn )t]} - {7 |k|2dB(K,n)exp[i(k-x - nt)]

= v(3/2) iéi1£1£2£2]k|231°Ede(g,n)dB(g1,nl)dB(Ez.nz)

expli[(k+k +k )+x - (n+n +n )t]} . ~ (B-2)
R 1 2 . .

Expanding the surface slope exponential functions inté Taylor series

around z=0,

kn9dB{kn)expi (K -x- nt)] = krin[1+{klg + Jlk|2c21dA(K.n)

expli(kex - nt)]- ok 1 IR NIGIEIN



-1

dA(k ,n)dA(Kk oMy )exp{1[(k+k ) ‘(n+ni)t]}

- ka k| 2dB(k,n)exp[i{k-x-nt)] - y(372) JIL 7 i |k!251-g

knk nk,n, €176 7%

.,

dB{k,n)dB(k, ,n )dB(k, .n,Jexp{i[(k+k +k,)x - (n+n #n )]} .

(B-3)

Rearranging,
kn gdB(k,n)exp[i(k-x-nt)] = indA(E,n)exp[i(E-g-nt)] + i;ﬁ ﬁ
i"|5|dA(E,n)dB(El{nl)exp{i[(5+gl).§ - (mn )t LIS é !

in|k|2dACk.n)dB(k, .n,)dB(k, n, Jexp{il(k+k +k ) «x - (n+n +n, )]}

7/

“ T (VI T = eky) 0ALm) Ak, on JexpliL ek, ) = (mon, )€l
1 | |
= 7 ke myn, KT | = DT+ DA MRk, ny)

dB(k,.n,)explil(kek +k )-x - (n#n 40 )t} - v LI k|2

1

dB(k.n)expli (k-x-nt)] - v(3/2) {10 117 (k)2 ok db(kn)

dB{k, .n )dB(k, ,n, Jexp{i[(k+k +k }-x - (ntn +n )t]} . (B-4)
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Numbering each term on the right hand side of (B-4) consecutively from

I to VII and substituting for dA(k,n) from (36), to third order

kn TET ksn)exp[i(k-x - nt)] - iéi é' "ﬁ ‘;. nin - nl)

dB(k-k, ,n-n,)dB(k, .n Jexp[i(k-x - nt)] - knil 1Kn, K]

[ (k+51~-lrS )HEE E1_52l -

dB(k-k, -k, ,n-n -n )dB(k .n )dB(k,.n )exp[i(k-x -nt)] . (B-5)
‘For second order let

=k,n-n, =n" . (B-6)

k - 51 - k ='§‘. n-n -n =n" ., {B-7)

- Then, after subst1tut1ng (B-6) and (B-7) into (B-5) and dropping the‘
pr1mes,

ke (k+k 1)
1 = ff TET.dB(k n)exp[1(k X - nt)] é;é é TETTE—E:T—' n(n+n1)

-

dB(k,n)dB(k, ,n Jexp{il(k+k }-x - (n+n )t])
gtp g g (nEngtng)n [ L (k2K )k - (et ¥, ) - (ke )
Englnlkznz E+51+kzl e vt IE+EZIIEI
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(5+52)-&]dB(g.n)dB(El,nl)dB(Ez,nz)exp{i[(g+51+52)-5 - {ntn +n,)t]}

(B-8)

Looking at the second term on the right hand side of (B-4), after using
(36)

knkn,
ke(k-k,)
Srr8 g r TAETR i T
"k kon TR 0y )dBlkok anon, )bk, )
dB(k, 0, Jexplil(k+k, ) -x - (ntn )t]} . - (B-9)

For the third order let
k-k =k” ,n-n =n" . _ - {B-10)

Then, after substituting (B-10) into (B-9) and dropping the primes,

1= 1] n2dB(kn)dB(k un DexpGil(kek,)x = (n#n )t])

0,
L {(k+k.) -k
Cprr g \ERRK
Enklnllfznz _rﬂ—— n(n+n1)dB(i_<,n)dB(|51,nl)dB(gz,nz)

exp(i[(ktk +k )-x - (n+n+n )t} . | (B-11)
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Using (36), the third term on the right hand side of (B-4) becomes

nr =3 g‘i i £n2|k]d3(k n)dB(k,.n, )dB(k, un, )explil(kek +k ) -x
- (n+n1+n2)t]} . (B-12)

and the fourth term becomes

. k-{k-k.)
1 frr s in r s =222
IvV=- [lk, |1k]|- k-k ]{- dB(k,n) + i -
Z knkyn, HE TR ke T - k,n, TRITEK, T
, 1n1
{n-n )dB(k k, sn-n )dB(kz,n ) “WT dB(kl,nl)
k,+(k -k.)
S roZ1 1T%al qp LN )dB(k -k N -n )dB( on )}
T, TG 2 -
exp{i[(5+§1)-§ - (n+n1)tj} . ‘ ' (B~13)
Rearranging,

wel 110 £k, dB(k,n)dB(k, .n, Jexp{i[(k+k. )}
2 En51n1 TETTE:T AN, dbli,n B0 JEXPUILIKHK, X

P
- (n+nl)t]} - 7 k

n(nl—nz)dB(g,n)dB(gl-gz,nlfnz)dB(gz,nz)exp{i[(§+gl)-x

‘ Y rirrr k-k k+(
-(n+n )t] - ~ 1 - 2

nl(n-n )
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dB(k-k, .n-n,)dB(k,.n) ) dB(Kpunodexplil{k+k )-x = (n+n )t]}
| - (B-14)
In the third term on fhe right side of (8-14), let

k - 52 =k’ n-n_=n" . : (B-15)

Then, after substituting (B-15} into (B-14) and dropping the primes,
'k, -
" TRTTR,T ﬂnldB(Esn)dB(Elanl)ESP{}[(Efgl)‘§
I [1 ek ] kg elk oK)
Elnlggnz ]EIIEII IEI-Ezl

.n(nlnnz)dB(g,n)dB(gl-gz.nl-nz)dB(gzbnz)exp{i[(5+gl)—5

s
n

-

-1
2

E ¥ sy
e?r‘a

1 Ir
- {n+n )t] ) En

B
- (n+n1)t]} -2 knk n k,n,

(i) k, } (Kt )-&

I O N
K, TR T | K]

.(nnl)dB(Efn)dB( )dB( R )exp{1[(k+k +k ) X

- (n+n +n )t]} . P -(B-16)

Substituting (36) into the fifth term on the right hand side of

(5-4) and rearranging,
[Ikllk.! -~ K-k ](1k|llk I)-‘ i dB(k )
B n ~ley -~ =1 Py =1 .|E . ﬁsn

in
1 .
. { “TET dB(EI,nI;} dB(gz,nz)exp{l[(g+gl+52)-§ - (n+n1+n2}t]}



I Kk,
k.n, |1 - 07— (k] +[k.[)nn_dB{k,n}dB(k ,n )
17172 2[ 13 K, } -1 17 ~171

dB(k,.n,)exp{i[(k+k ,+k,)-x - (ntn +n }t1} . (Bf17)

The dynamic boundary condition is now specified in terms of dB(k.n) so

that
Y7 gdB(k.n)expli(k-x-nt)] = T+ I + II1 + IV + V + VI + VII .
(B-18)

EQuation (B-18) c¢an be rearranged and then rewritten as

(3 koon ddB(k,n)expli(k-x - nt)] = 0 (B-19)

-~

Jr .
kn F(k,n; gl,n

where
2 k-{k+k.) .
Flk.nsk,.n 3 k on) = - g - ylk]2+ D+ I s [n%- e n{n+n ) +
‘ lA ‘l =202 m— Elnl ]j.(”E_H.(l ' 1
k<k . : n(n+n +n_).
_ 2 o SN )
(1 TETTE:T-)nnlde(gl,nl)exp[1(gl X nlt)] Elnlﬁznzgﬁ?;E::E;T“

(k+k +k ) -(k+k )(k+k.)-k
1 R N MR AT
["’ W2t )% - =TT ]

(k+k, )k , -~m1 5 . 1 | k-k, | '
. +«———ﬂ§r—— n(ntn)) - 5 n2[k] - 5 |1 - TRTTE T (fk[ + IEI|)nn1

—

ol [1 ('5“52)"51] (vt )&

T TR, T 1| TR ™Y (3/2)Y|E|251-'52}
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dB(k .n )dB(k,.n,)exp{il(k +k,)-x - (n +n )t]}

kek, ] k,-(k.-k.) -
1 r17 4 = %1 S1TV0170,
- 1 - -n_)dB(k.-k., n, -
Z kpnk,n, [ lbilm] Rk, "(mn Bk, Ky myony)
dB(gz,nz)exp[i(gl-5 - nt)] . - (B-20)

Since dB(k,n) can be any function,

F(I_{,!n; El’nl; '5 :nz) =0 ) . (B—Z])

2

Thus, after setting (B-20) to zero and rearranging terms, the third

order dispersive relationship can be written in the following form:

s [kl 1L
9 v T gn, | TR T ) * 2 0 e,
. i - A d

1 i
Bk ) ['(k. 0] L7 h(ntn +n )
,n_Jexp[ilk «x -~ n - T
A ! Kinykpny |IK3k
| kek 4k ) - (ki ) (k) ok
] (k 172/ ML/ AR R0 2
[7 (k) - == T

dB(El,nl)dB(gz,nz)exp{i[(gl+gz)-5 - (n1+n2)t]}.
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kek, ]k +(k -k,)
TTRITRT | Tk, T "nyony)dBlk,kys 0yony)

or.tB(Ig2 ,nz)exp[i(gl-g - nlt)] . (B-22)
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2. Statistical properties of surface waves under non-uniform currents.

-

2.1 Introduction

Previous studies (Longuet-Higgins and Stewart, 1961; Huang et al,
1972; Phillips,. 1966) have shown tﬁat when waves encounter‘;urrent,
wave characteristics undergo changes due to interactions between the
waves and the current.

In order to.utilize the phenomenon of wave-current interactions as a
means of measuring current, it is desirable to first conduct a comprehensive
study of the effects of current on relevant statistical properties of
waves. This includes those of wavé elevation, wave amplitude (peak),
zero crossing rate, number of maxima, velﬁcity of zeros and specular
points, and other related quantities for both the one-dimensional and two-
dimensional wave systems. Those quantities that are most sensitive to
wave-cuxrrent interactions and particularly suited for current measutrement
by remote sensing devices will then be identified. |

Work to date has been devoted to one dimensional wave systems only.
The effects of current on wave elevation, wave amplitude, zero crossing
rate, number of wave maxima, and velocity of zeros have been studied ahd

reported in the following. -

2.2 Distribution of Wave Elevation
Both theoretical and field studies show that the surface elevation of
a random wave field is approximately Gaussian. That is, the probability
density function p(f) of surface elevation £, measured from mean sea

level is

2 .
exp|- %‘éii (2.1)

1
(¢) =
P = e p
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in which o is the standard deviation of £ which can be obtained from the
spectrum of surface elevation.

1t was.shown previously (Huang et al, 1972) that under the influence
of a stea&y noen-uniform current, the frequency spectrum of a random

gravity wave field is given by

*
44" (n)
(1 + (1+ﬂgfﬂ)1/21 [ +-‘*—‘gifi)1/2 + (1+§—;‘E)] (2.2)

$(n) =

in which n is total frequency, U is current speed, g is gravitational
acceleration and ¢¥(n) is wave frequency spectrum without the influence
of current. In this study, the Kitaigorodskii-Pierson-Moskowitz spectrum

is used. That is,
| 2
() = B expl-a D™ - (2.3)
n A |

- in which o and g are non-dimensional constants equal to 0.74 and 8.1 x 1073

respectively, and n, = g/W, W being mean wind speed.

The standard deviation o that appears in equation (2.1) is given by
. n, , ,
6= f ¢{(n)én (2.4)
o .

in which n. is the cut-off frequency of the wave spectrum taken és that
of a wave 30 cm in length. | |

The probability demsity functions as given by equation (2.1) are
plotted in figures 2,1, 2.2, and 2.3 for different current and wind
. speeds. It is seen that for a given wind, positive current reduces the
probﬁbility of large wave elevations while negative current increases the

same. It is also noted that the larger the wind speed, the smaller is

the effect of current on wave elevation.
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W =05 m/sec.

U = 4 m/sec. r\
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Figure 2.1 Probability demsity function of wave surface elevation
" under current for wind speed at 5 m/sec.
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1-D current

W= 10 m/sec.

U = 4 m/sec.

U = 2 m/sec.

U =0 tn/dec,

U = -0.5 m/seé.

-3

-2 -1 0 1 2 3

Figure 2.2 Probability density function of wave surface elevation
.under current for wind speed at 10 m/sec.
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1-D current
W = 20 m/sec.

U = 4 m/sec.

Ue=2 m/seé.

U= 0 m/sec.

U = -0.5 m/sec. £{m)

-10 -5 _ 0 | : 5 : 10

Figure 2.3 Probability density function of wave surface elevation
under current for wind speed at 20 m/sec.
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2.3 Distribution of Wave Amplitude
For a Gaussian, zero mean, stationary seé, the probability density o
~ funetion p(n) of the amplitudes n (peak) of the waves is given by

{Longuet-Higgins, 1956).

1 1 n?
p(n) =\/2“mo {e exp(- 3‘;;;20 +
I 2 Ql-
1mo N exp(- zm)f exp(~ 5 2 xhyax] - - @29
in which
‘whic P
2 =1 - m0$4 (2.6)

a parameter measuring the r.m.s. width of the spectrum and, in the case

when the waves are considered a function of time t,
m, = § ¢(n)dn
n
= I n2¢(n)dn L _ . {2.7)
n

= f n4¢(n)dn .

< n

If the waves are considered as a function of space n, ¢(n) is to be
replaced by ¢(k), the wave-number spectrum and n is replaced by k, the
wave number. In either case the integrations in equation (2.7) are to
be extendeq 6ver the entire gravity’wave range.

Other statistical properties of wave amplitudes such as the mean
ui, variance vy, and coefficient of skewness B,-can be readily derived

from the expression of probability density function p(n) of wave peaks

in equation (2.5). These are
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ui =\J3P0(1-¢2), (2.8)

Yy = mg[1-(G -1 (- D1, . (2.9)
_e2 ‘
\r (17—3} (50-(-12—53— 3z (2.10)

Another qﬁantity of interest is the proportion of negative peaks (peaks
of negative magnitude) out of the total number of peaks of the waves,

denoted by v, and is given by

1/2

=% [1-(1-2) (2.11)

Effects of current on the statistical quantities mentioned above are

computed for the case when the waves are treated as functions of time and

‘presented in graphical forms. In figure 2.4 the ratio of mean wave

amplitude ui with and without the influence of current is plotted against
current speed U with mean wind speed W as a par#meter. It is seen that
positive current reduces mean wave amplitude while, due to energy pile up,
negative current increases the same and the effects of current are.more
pronounced at lower mean wind speed. |

Figure 2.5 gives th; ratio of variance of wave amplitudes Uz.with
and without current. The same trend that is observed in figure 2.4 is
noted here.

Presented in figure 2.6 is the ratio of coefficient of skewness Bl
with and withbut current considered; It is seen that positivé (negative)
current give? rise to an increase (decrease) in skewness of wave amplitude
distribution. This is because under the influenée of a positive éurrent
the waves become smoother and therefore of narrower band giving rise to

more positive peaks than negative peaks resulting in a more skewed
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Figure 2.4 Change of mean wave amplitude under current.
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Figure 2.5 Change of variance of wave amplitude under current.
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Figure 2.6 Change of skewness of amplitude distribution under current.
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amplitude distribution. Conversely, negative current feeds energy into

the wave system, Therwaves become more choppy and therefore—éf widef band
giving rise to a less skewed wave amplitude distribution.

Figure 2.7 presents the ratio of y with and without ;urrent included.
That there are less negative peaks in the presence of a positive current
than when the current speed is negative is clearly noted. The physical
mechanism underiying the behavior of the curves in figure 2.6 also governs
that of the curves shown in figure 2.7.

With the statistical moments of wave amplitudes‘discussed, the
characteristics of the probability density function of wave amplitudes as
given by equation (2.5} and presented in'figure 2.8 can be readily under-
stood. 1In figure 2.8 the probability density functions p(n) of wave
amplitudes are given for wind speed W=10 m/s and current speed U=2, 0,
and -0.4 m/s. That positive current gives rise to smaller values of mean

and spread of wave amplitudes than negative current does is clearly seen.

Y 4 B
The curves also show that the amplitude distribution is more skewed under

positive current than in the case of negative current.

2.4 Expected Number of Zero Crossings and Maxima
. In addition to ampligude distribution, the statistics of number of
threshold crossings and extrema of random functions and, in this case,
sea waves are often used. Whilé it is difficult to obtain the distri-
butions of these quantities, their expected values are easy to compute
both theoretically and from field observations.
According to Longuet—Higgins (1962), the expected rate of zero

crossings, denoted N,, is given by

m
N, =3 G2 (2.12)
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and the expected number of extrema per unit time is

1 M4 1/2 |
L (2.13)

When the waves are considered as a function of time, the ni's are obtained
from equation (2.7). When the waves are treated as a function of space,
P(k) and k should be used in place of ¢(n)dn in equation (2.7). In this
study, only the former case is considered.

In figure 2.9 the ratio of N, with and without the influence of
current is presented. In the presence of positive {negative) current,
waves are of a narrower (broader) band resglting in a decrease (increase)
in expected number of extrema, per unit time. |

In figure 2.10 the ratio of N, with and without the influence of
current is also presented. It.is seen that tﬁe same trend observed in

figure 2.9 is noted.

2.5 Velocity of Zero

The quantities examined above all refer to waves either‘treated as
a function of time t for a fixed point in sﬁace of as a function of space
%, for a given instant of time. Moving waves are, however, func;ions of
both space and time. It is, therefore, of interest to investigate some
statistical properties of moving wave forms. Preseﬁtea in the following
is velocity‘of zZero.

Consider a one-dimensional random wave f(#,t), the velocity of the

zero, denoted ¥, is given by (Longuet—Higgins, 1956, 1957)

_ . Bf/s8t o
9f /3% : (2.14)

The distribution of [, it was shown (Longuet-~Higgins, 1956, 1957), depends

on ¢(k), the wave-number spectrum. Under the influence of current,
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p(k) is given by (Huang, et al, 1972)
B - _1 o .4
. = _

Y(k) =

in which ¢ = (g/k)lfz, the phase speed. The above expression for p(k)
is derived based on the assumption that when there is no current the wave
frequency spectrum is given by equation (2.2). Defining the following

moments of.w(k) as.
m, = [ Hp0dx
k

m = [ kn()dk - (2.16)
k

mg = J.nzw(k)dk
" .

in which under the influence of current the relationship between frequency

n and wave-number k is given by (Huang et al, 1972)

2

it

= 1,1,. 40n 1/2_2 '
[2+§(1+—E—3 1, : o (2.17)

gk

the probability density function p(Z) of velocity of the zero T is
(Longuet-Higgins, 1957)

2
Aolmz

p(®) =1 573 | (2.18)

[(-D)2 + 8,/m5)

in which 4, = my my - miz and 7 = -milmz, the mean of 7. The interquartile
range @, a measure of the spread of g, is w = beﬂolmz.

Plotted in figure 2.1l is the ratio of 7 with and without current.
It is seen that the mean of r increases (decreases) with increasing positive

(negative) current. It is also noted that the larger the wind speed, the
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less is the effect of éurrent on the quantity considered. It is worth
noting that comparison of figure 2.11 with figures 2.4 to 2.10 indicates
that the effect of current is more pronounced on velocity of the zero
than on any of the other quantities examined in this report, suggesting
that velocity of zero may well be a quantity to be used for curreﬁt
measurement by remote seﬁsing devices.

In figure 2.12 the interquartile range w with and without current is
studied. The curves exhibit the same characteristics as those of the
curves in figure 2.11.

Finally, the probability demnsity function p(g) of ¢ is sﬁown in
figure 2,13 for W = 10 m/s and U = 2 m/s, 0, and -0.4 m/s. The inflﬁence
of current on the mean and spread of velocity of zero shown in figures

2.11 and 2,12 is clearly reflected in figure 2.13.
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2.6 l Conclusion

The results of the theoretical studies indicate that the statistical
properties of the sea surface are sensitive to whatever causes changes
in the wave energy distribution; i.e., the spectral functfons. This
is true even with higher order expensions such as in the Gram-Charlier
series for wave height probability density function. In the open océan,
mechanisms that will change energy distribution substantially are, of
course, winds and major currents. However, before more detailed knowledge
of generation of waves by wind is available, it is Iimpossible to utilize
these properties as a means to measure surface wind over the ocean. On
"the other hand, current-wave interaction is more definite and the effect
is of the first.order. Furthermore, since the change depends on relative
values of currents, it is less susceptible to tﬁe error in establishing
an absoclute relationship as required in wind wave generation studies.
Under normal conditions a wind system will cover an\area substantially
larger than the wave scales and thus provide a homog;neous field for wave
actions. Take an inlet or a river mouth for example, the local flow will
generate alnon—uniform velocity field over a homogeneous wave field.
Consequently, the waves will interact and change characteristics depending
on the flow conditions. Such changes can be detected easily ffom fhe
probability density function.

Another example is the Gulf Stream. The width of the system is about
100km with strong shear zomes on its sideé. Though the decay scale of a
wave 30cm in length is only 1700m, it is not unusual to find substantial
current velocity changes across such a distance as re;orted by Stommel

{1966). When waves encounter such current systems, their characteristics

will change accordingly. Although the analyses in this report did not

- P
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Include shear current Eases where as in the Gulf Stream the shear will
be importént, a8 qualitative prediction on tpe wave helght probability
density function can be made with the available results as a guide. To
facilitate the discussion, a schematic diagram is given iﬂ-figure 4.1 in
which a typical velocity cross section of the Gulf $Stream measured by
Worthington (1954) is shown. The total flow region is further divided
into four different sub-zones numbered one through four, with A and B
indicating the local extreme of velocity. If wind generated waves are
propagating from the open ocean of zone 4 across the Gulf Stream to
zone 1 toward the land, they will first encounter counter current in
zone 3. The probability density function of wa?e elevation will become
increasingly flat until it reaches péint B. Erom there on the relative
change of the current is increasing in the direction of the waves; there-
fore, the flatness of the density function will become less and less until
point A is reached. After waves pass point A, relative chaﬁge of the
current is in the opposing direction of the wave again, and the flatness
will increase accordingly. Granted that no single wave will last the
whole current system under moderate or light wind conditions, but as iong
as the locally generated waves can experience different current éonditions,
the changes in probability curves will still show the effects. - Such
changes are easily detected by means of remote sensing devices, and thus
it offers a newway of measuring the major ocean current systems.

Although this seems to solve the problem in-principle, there are
related problems that will have to be solved before the final result can
be used to set up a routine in practice. One of the problems is that the

results in the theoretical analysis are based on one-dimensional currents
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and waves, which is not realistic compared to all the ocean situation;

.

therefore, an extension inte the two-dimensional model is necéésary.

Secondly, we have to transform all the analyses inte wave number
space. For the one-dimensional model, a frequency spectrdﬁ is sufficient,
while frequency spectré are easily available from data collected by the
conventionallmethods in the form of time series, the remote sensing method
is more effectife in ecollecting data at any instance covering a large
area. Such data in spatial vériables will give us more complete information
in the form of wave number spectra; therefore, the results presented in
this report will have to be converted into parameters reflecting spatial
distributions. |

‘Thirdly, we need a definite relationship between wave number and
frequency in a random wave field. This is critical especially in this
developing stage when checks between remote sensing and in situ results
are indispensable in calibration and improvement of the syétgm; In such
processes, it is necessary to transform information froﬁ fréquency space
(obtained by in situ methonds) into wave number space {obtained by remote
sensing methods) and vice versa. In the pasp a rough relationship baéed
on a single train of linear small amplitude waves has been used. The
deficiency of this approximation is tolerated for lack of alternatives.

A new method of establishing a more accurate relationship is being

developed during this study.
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3. 1Interaction of Capillary-Gravity Waves with Non~-Uniform Current

One of the problems of a laboratory study of wave interactions has been
the difficulty of generating waves in the laboratory which correspond with
the type of waves involved in the existing mathematical descriptions of the
interaction process. One such description is that of Huang gg_gl_(1973)
which rigorously develops the interaction of pure capillary waves with current
in the one—-dimensional case. However, the single wave trains generated under
laboratory conditions are almost never pure capiilary waves, but are rather

capillary-gravity waves, described by the equation
o2 = yk3 + gk, G

where ¢ is the wave frequency in radians, y is the surface tension constant,

g is the gravitational acceleration constant, and k is the wave number, equal
to 2w/*, where X is the wavelength. Waves generated with a frequency of 30
cy/sec still consist of approximately 34%Z from gravity wave contributions,
represented by gk in (3.1) above. At 40 cy/sec, these gravity wave contri-
putions are still approximately 23%; thus increasing the frequency results
in the generation of waves which approach the pure capillary case.
Unfortunately though, one phenomena limits the development of a single train
of pure capillary waves——cIOSs waves generated at the wave maker perpendicular
to the direction of propagatioh desired. Between 30 and 40 cy/sec, these
cross waves appear and increase in intensity until at about 40 cy/sec almost
all energy goes into these cross waves. At this‘point, no single wave train
 is possible. Thus in reality, the single wave trains generated in the
laboratory are basically capillary-gravity waves at the shorter wavelengths,
and conversely, gravity-capillary waves at the longer wavelengths. Therefore,
what must be described mathematically is a more complex wave made up of both
capillary and gravity type terms. In general, phase speed ¢ and wavelength
A are related as shown in Figure 3.1. To the left of the minimum phase speed,
at A = 1.76 cm, are the values correspénding to capillary-gravity waves, and

. to the right, gravity-capillary waves. Moving further to the right or left
results in a more "pure' wave. Note that for any c other” than the minimum
value, the relation between ¢ and X is double-valued. Because of this, only
the capillary-gravity reglon will be treated here. The method to be used is

the perturbation method, with the perturbation e being such so that e < 1.

—— -
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: ' A

Figure 3.1. The relationship between phase
speed ¢ and wavelength A

In this approach, we use the energy conservation equation as used by

Phillips (1966) which states that

v

3E 3 52
Bt + o, {E[U, + cga]} + sas =, 8, (3.2)

where
' @, B =1, 2, corresponding to x; = X, X5 =¥

= group veloci
cgnl group velocity
U, = current velocity
E = wave energy

Syp = excess momentum tenmsor, or Reynolds stress

|
(=1
i

dissipation.
For the one-dimensional case under steady state conditions, and no

. dissipation, (3.2) can be written as

3 au _ | |
o {E[U + cg]} + sxxax = 0. (3.3)

Thus expansions in powers of € are needed to substitute into (3.3). We begin

by rewriting (3.1) as

- :YkB(l +;§7). . (3.4)

-

To develop an expression for Cgs we take'%E of (3.4) to get
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2628 = 3'Yk2(1 + =B 4 e (- 28
ak 2 3
Yk - Yk
or
3vk2 (1 + ) - 2g -
30 vk .
_— = » (3-5)
3k g 3+ g2)1/2 .
Tk
Define now
K = '}..i s €EF _§'2_ )
k vk

wvhere the hat values denote constant values at the points where U = 0. Thus

using these definitions, (3.5) can be rewritten as

g "3 Eo[Kllz(l £t 372, e 1/2] ’ (3-6)
K XKWT(L + —-i') .
K
. A WL e e g 1 R
wnere c, = Yyk , the pnase velocity of a pure capillary wave at tne location

where U = 0, thus a constant value. Expanding (3.6) and grouping by orders

of ¢ results in

| 3.1/2, 1 5 2 ] S
L € =T cglKT T e+ (=) e + "] . (3.7)
. B 2 °[ 6K3/2 241{7/2

Now, to develop an expression for U, we start with the kinematie '

conservation equation, as used by Phillips (1966):

ok

_— '5-1:--!- VI.I = 0.

Assuming steady state conditions, this becomes

v(o + kU = 0.

For the one-dimensional case along x, this is just

d . - r
Bx(kU + ke) = 0,

“-z
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L)

since 0 = ke. This means that
kU + kc = constant.

The constant will be chosen where U= 0, k = fc, c = E, thus

kU + ke = 1?3
or
A
0 (] k 1
_—| = s = =
¢ ¢ x F
0’2 2 ‘
Since G =c = vk + 1%-, using (3.1) it follows that
k
p YR@+E5H  yika + 5
e _ kT : K
Az - A = A )
 ykQ +E5) k@ + 9
vk
or
K1/2(l +_5_2_)1/2
L _ K
& 1+ E)11‘2

Using this result in (3.8) leads to

1a 7

o —75 -
3x 2 21(5/2 K

)

%[5

au_J..1 ___1 .4 1a 3 1. 7 1.2 ...
—[( e, +5¢€ K2)5+§to(2K9/2+ Z)E +

(3.8)
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| Kllz(l +£2-)1/2
U = '1-_ - K a -
K a+ 5)1/2
. A oA 1 12 ' o
Expanding, using ¢ = ¢g(1 +EE - 3¢ + *+*), and grouping in terms of ¢ orders
gives '
oL L1/2,4 s 1 1 _1s 1 i 2
v= [(K K8, + 2% K3/2)E §°°(K7/2 e ] . (3.9
" It thus follows that Clpe

(_3.10)
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Expanding the energy E now as

) 2
.7'.E=E°+€.El+ €°E, + - (3.11)

and the Reynolds stress term as

3+ e _ 1 1,12 . L2
S:dc E-TZ_EE_(B'I'E)(Z 25+2e )[E°+EE1+ €E2+ _]
or
3, 3 3 2 '
Sxx' 2E0+ (-é-El-Eo)e-l- (2E2 -—El-l-Eo)s 4+ v, {(3.12)

when grouped in orders of «¢.
By substituting (3.7), (3.9), (3.10), (3.11), and (3.12) into (3.3),
carrying out the multiplications and grouping by orders of ¢, the energy

equation (3.3) becomes, to order 2,

s\ 1 12, |, 3172, 3., 1 1 . 3K _ |
K 2K
L . TPUR O I R, Fdet ] - ].,'.,ﬁ PO < F~
Mulieipiying (3.13) by “3/% results in a perfect partial derivative cf a
K .

quotient, so that (3.13) can be written as

. EOE;,[;+§1-K1/2] U
x EYE = 0. (3.14)
Thus
Eo o['— + lKl/z . " :
K3/2 .= constant. ' (3.15)

Again we choose the constant at the locatioms where U = 0, for there

P
Eg = Egy K = lfi = 1, This r_esults in a constant of

coll + %]
1

3 .
= constant = 'i‘ c .

Equation (3.15) now becomes



K 3"‘ n H
= c ;
27070 * 5
K3/2 2 ]
<4
or.
B, 27 - .
o= = . (3.16)
E 1, 1,172 :
° gtk | A
Equation (3.16), where the order is £°, corresponds to the pure capillary
wave case. This result is the same as that obtained by Crapper (1972},
Huang SE.EL (1973), and Holliday (1973).
be rewritten in the form

Using (3.9) and (3.10a), (3.16) may

i
A
!
3 3 ¢
E, 76 | \
o) . oy b
= (3.17)
EO .IKI_ + _3_(C .
o 2°&, \
Writing the‘energy equation (3.3)'in its expanded form to order ¢, we R
. A
obtain i
i
|
5 Al 3 . AL, 9 1 1, 3K ‘
== EC (57 - —575) + E_c,( + + ) ==
ax "oCo3K T 372 Sy A Y L \
e a1 112 A, 3 . 3 3K _ .
Ta B T ) T R%C T 4K1/2) ax O

(3.18)
Note‘that the El terms of (3.18) are of the same form as the order &© case.

PR
e T

Thus (3.18) can be simplified immediately by multiplying through with EE%EH,
resulting in , ' '

i
i
. ]
109 a1 3 : A9 1 1, 3K
B8 e —2 + E S (P + Ly K
37
X 2.3x ) o ©2K 4K3/2 070 8K4 4K7/2 2K2 ox
A L, 1172
LA Byl + 25X | o
ax 372 e

(3.19)



By adding and subtracting identical terms, thus adding a well chosen

zero to (3.19), its form can be changed to

1 1/2

a .1 3 ' : ~ 1
SOk ~ 372 EfeoG 5%
3 4K + B8 (i i XK 3 : -0
3% K3/2. K?/z 2K2 ax = 9x K3/2

Using (3.17), we may substitute for E, in (3.20) and determine the

integral of the middle term, obtaining

In K..

Mer
>

A
Oco

By thus using (3.21), (3.20) can now be written as

1/2 _

3 3~ a 2K 1 3% A

—{ZE c [ ) + E c (—= + —EQ In K} = 0.

x | 27970 4Kl/2 + ZK 5/2 2 o

Thus
‘ 1/2 _

32 A 2K 31\ .
SE ¢ ( )+ E - 573 ) 4+ 3 1In K = constant,
200 4K1/2 + AKZ 5/2 2 EoCo -

follows from (3.22). Agaln we choose te- develop this constant at the’

locations where U= 0, K = K =1, E; = El' Thus we obtain

;3"A 1. AR N } 2a
constant = EEoco(" 6) + Elco(Z) + Eoco(o)
or
tant = —-E 12
constant = & 1 o " 6 Oco} .

. A : B
Notice the E. appearing in (3.24), something we have no expression for.

1
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(3.21)

(3.22)

(3.23)

(3.24)

n
is thus at present an unknown constant. To determine El’ we have to lock at

the equation of total emergy for a capillary-graﬁity wave, given by

E= Ecapillary + Egravity



or
E = ']-"prazkz + lpga.2 = ip*fazkz(l + £ ) .
2 ‘ 2 2 2
.. Yk
A ~ A -
Then, where U= 0, E = E, k = k, a = a, so that
A 1Y
E = 2o’k + £ .
Yk

But this is just

bty >
n

~ . ~ f\‘+ 2!\
E0(1+ E)—Eo-’rsEl EE2+ .

Thus (3.27) results in the general condition that

_ From (3.27), we have now that

A A
E, =E,
[o]

1

and (3.24) can be written as

_3an - 1% A _ 58 A
constant = Z{Eoco 6 0co} = Zﬁoco .
Combining (3.23) and (3.30), our result is mow
172 . :
38 A . 2K -3 A 1 1 58 A
SE ¢ [— - + In K} + E.c (—= + == =E ¢,
2700 4Kl/2 + 2K 1l K5/2 2K 47070
or
. : 1/2
o _g_Kslz - 3372 10k - 333 211(/2 - 32)
1 _ ’ 4K + 2K
A
E /2 42

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

- (3.31)

(3.32)

Equation (3.32) is thus an equation for order sl in energy for a capillary-

gravity wave meeting a current U.
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To obtain the result to order ¢, we now write the expansion of the

energy equation (3.3) in order €2, thus

39

] A 3 1 ~ 21 5 -3 - 3K
— {Ec (—S= -3+ E e ( - - )]
?x olo 16K7/2 8K o0 32K9/2 16K2 4K5/2 1/2 ax
3 A 1 9 1 1 gk
+ — {E.c (55 - )}+Ec( + + ) —
9x "1 02K 3/2 8KS/Z 4K2 ZK1/2 9x
NERREX: (%:—-+%K1/2)} + B8 (-2 - —%E) X .o, (3.33)
Bx 2K 4K
Note that the E, terms have the same form as the order e° case; the El

2
terms the same form as the order

specify what E; and E; are, thus
as before by multiplying through
of the last two terms in (3.33).

Equations (3.16) and (3.32)

a similar approach may be used here starting

£Q case,

by EE%E, thus making possible the combination
This results finally in

(

3312 5/2 -
B2 291_[3¢21<’]
B, &+x5H | % 6>/ ? + 8K
] K 2 :
w32 _ax. 5 3 L3, a? . 3
- 1 372 ) G -7 K -5075 2)]"' 572
6 + 3K 44+ x 8K
S15 . .3 1
32K + 1/2 + —-ln K + (ln K)
) ) o
(1 + 2173 )
. 5.21/3 . 'K1/2 + 21/3
6 T A3, 2/
| k- 2T 2
2222 21!3 arctan 4/53 - arctan Aiifz i/2 (3.34)
32\f 249 2%
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Thus equations have been determined for Ej

and hence we may write the energy to order

E = Eo + eEl +

knowing only the dimensionless parameter K.

o]
i

o
£~

(o=
+

or
=+ 5 =
Kz + %)

gl (i

. = U c .
we can define U = T and substitute

get

1
U+3c

One possible solution scheme then, is

various values of U and €, and then use (3.

100

(3.16), E; (3.32), and E, (3.34),

2

£ as

EZEZ, ) (3.35)

Thus rewriting (3.8) as

1, (3.36)

inte (3.36), rearrange, and

. - (3.37)

to numerically solve for K for
16), (3.32), (3.34), and (3.35)

to obtain the energy value for each particular value of U and ¢ chosen.

This is easily done by computer. Note in (3.37) that singularities exist

at values where U + ¢ approach zero. TFor these singularities, K values

become infinite.

Computer analysis can now easily be done and checked with laboratory

results.,
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PART 1I -

EXPERIMENTAL STUDIES

In this part of the report, the wave measurement system was first
discussed. The system was used to study wave decay and capillary-
gravity interactions. Some preliminary results of wind waves are also

included.
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1. INTRODUCTION

Thi$ ééction'éééis with experiments on Gravity and Capillary waves
relative to improving the understanding of how these wave mot%pns are
influences by surface currents. It is known that active microwave back-.
scatter Pesults primarily from the capillary waves via the mechanism of
resonént or Bragg‘scattering. The relation between the ocean waves that
are the primarf contributors to the radar crosslsection and the incident
radar frequency is shown in Figure 1l.l. This figures was developed for a
radar depression angle (NADIR) of 45°. It is evident that short wave-
length or capillary waves contribute the mosf ~~ +he radar cross section.
Moreover Huang (1972) has also shown that the shorter waves are more stroﬁgly
influenced by currents. Therefore, there should be a strong correlation

between radar cross section and ocean surface currents.
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from this simple argument. However, these has been considerable difficulty
in making meaéurements of the short or capillary wavés, and thus difficulty
in relating the effect of curfents via the change in capillary.wave spectrum ’
to radar cross section. Indeed, until recently and with the exception of
microwave measurements of the“ocean wave spectrum, the only method of making
capillary wave measurements was with small wave height pfoﬁes. McGoldrick
(1971) has developed a capacitative wave height probe, specifically designed
for capillary wave measurements. Although the system has been used for
capillary waves, there has remained some question as to the validity of using
a probe for the measurement of short wavelength waves. This is primarily
because any probe will have a = meniscus on it due to surface tension and

because capillary waves are also driven by surface tension. Therefore it was

not clear that any effect due to the meniscus could be removed without
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altering the wave under consideration. Because of this, various optical =~ = =

systens have been proposed to measure capillary waves or to verify the
accuracy of the‘wave height probe. Recently Tober, et.al.(lQTBIVand Sturm
and Sorrell (1973) reported optical wave measurement systems. The data of
Tober, et.al.{(1973) reveals higher frequency éomponents than measured with
a wave height probe for the same conditions. Moreover, Sturm and Sorrell
(1973) made a careful comparison of the response of their optical system
with a capacitative wave probé of the kind developed by McGoldrick (1971).
These results show a grédual roll off of the probe sensitivity with increas-
ing wavé frequency or decreasing wave length. Based on these results, thé'
practical limit of the wave height probe is for wave lengths greater than
2-3 em. This is a longer wave length thén much of the wave spectrum of
concern here, and thus the ﬁse of an optical wave measurement system is
required.

The sysfem employed by Sturm and Sorrell (1973) used a one dimensional
position sensitivé diode. While this diéde is commercially available, it
restricts the system to measurement of one dimensional wave trains. Most of
the data of interest involvés~2 dimensions or raﬁdom wave fields, and thus a
differert diode array or matrix is needed. Part 2 of this report describes
the 2 dimensional diode matrix that is used and the necessary electronics
developed for data acquisition with this system.

The followirg parts of the report deal with capillary wave experiments.

- An important question is how long the capillary waves live after generation.

While this is well understocd when no surface current or possibly when a
constant current is present, there have been no data for variable currents

where wave-current interaction is expected. In addition the presence of
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any surface film can alter the capillary wave damping. Because of this an
investigation of capillary wave decay on constant and variable currents as
well as an investigation of surface films was undertaken. Part 3 reports
the results of these experiments.

ft is wel; documented that microwave backscatter occurs by the mechanism
of resonant or Bragg scattering from the capillary waves. The presence of
the longer waves or'the ocean swell is not ﬁegligible, however, and there has
been considerable work including this in computations.of radar cross sections.
The more successfull attempts have been with tﬁe so-called "composite model"
where the sﬁell is considered to simply tilt or alter the orientation of the
surface containing the capillary waves. This model requires a knowledge of
the wave height spectrum for the capillary waﬁes and an important quesfion is
the influence of the ocean swell on the distributlon and amplitude of the
capillary waves. In simplest form this is the question of any ihteraction
of a long or gravity wave with a capillary wave. To investigate this an
experimental study of the interaction of gravity and capillary waves was .
undertaken. AThe results of these experiments are given in part 4 of this

-

report.
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2, Wave Measurement System
2.1 Intreduction

The overriding objective of this work is to aid in the development of
‘remote sensing techniques to the point where the wave characteristics, in
particular wave energy or slope spectra, can be used to infer ocean currents.
This requires work in two areas (1) development of remote sensing techniques
to measure the ocean wave characteristics and (2) relating these wave
characteristics to the mean curvent. Most of the work reported here is
devoted fo advancement of knowledge relative to broblem (2), which is relating
the wave characteristics or spectra to the mean current that is present.
Howeyer this cannot be accomplished without some knowledge of remote sensing
techniques.

it

nethcds employ the reflectinn

e

Most of the presently conceived remote sens ng
of some form of radiation from the ocean surface. This reflection appears to

be related to ocean surface roughness or to the slope Aist?ibution of the

ocean surface, rather than to the height distribution of the surface.

However most of the presently employed oceanographic instruments measure wave
height and not wave slope.w'For a single wave there is a direct relation

between wave height and wave slope, however for a random wave field there is no
such relation, although there are empirical equations that are scmetimes used.
It is for this reason it is considered degirablg to develop instrumentation to
measure wave sldpe and fo try to relate this measured wave slope Spectra to mean
water current. Such instrumentation has two uses in the remote sensing program.
(1) It can be used to check or verify the data obtained by variosus remote |

sensing techniques. For this purpose the instrument should be able to measure

ocean wave slope spectra. (2) It can be used to obtain laboratory data which



are uced to relate measured wave slope spectra to known mean water currents.

For this purpose the instrument must have a high accuracy.

Since our program is ﬁ?imarily an investigation of the relation of wave
characteristics to the current, the development of an instrument to make
laboratory measurements has been our major purpose. However, when possible
we havé also kept the requirements of objective (1) in mind and tried to
develop a system that can be modified for ocean measurements.

It should alsc be noted that much of thé ocean's surface roughness is
due to the'capillary waves and that the longer gravity waves which contai
most of the energy'only weakly affect the surfaée roughness. Therefore the
most useful information is a relation between capillary wave characteristics
and water currents. Any wave measurement technique that requires'the imersion
of a probe through the water surface will have?meniscus formed on the probe
due to the surface tension of the water. 3ince T
fhe driving force for capillary waves there has been considerablé discussion
.by many people as to the accurécy of any probe technique for measuring
. capillary waves. Recently Sturm and Sorrell {1973) have shown experimentally
that the meniscus does cause significant error when measuring the wave height
of short caplllary waves ﬁith a probe. Therefore it is desirable that the
measurement of wave slope be made without a probe being immersed through the
surface. Finally, since the capillary waves have very short wave lengths,
good spatial resolution is required. Thus the requirements for the wave

measurement system are that it (1) measures more slope to a resonable accuracy
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(:;2%) (2) that the spatial resolution be at least 0.5 mm and that the freqﬁency

response be at least 100 Hertz. (3) that no probe sticking through the surface

be required. (4) If practical, a system that can be adopted to ocean surface

measurements be empleoyed.
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The system developed to meet these requirements is an optical wave slope
measuring system, and at present has met all eriteria mentioned except (4).

Moreover, at this time there do not appear to be an insurmountable problems

-in meeting criteria (u).

2.2 Pfinciple of Operation

Because of the inherent disadvantage wiﬁh the probe system, there have
been many optical techniques suggested for the measurement of wave slope. A
brief review of some of the most applicable techniqﬁes is given with a
description of the present system. Early techniqueéﬁtiie considered by
Hulburt (1934), @ox and Munk (1954), and Schooley (1954), used the reflection
ofﬁﬂght to infer ocean surface roughness. While thése techniques or modifica-
tions of them have been considered as possible remote sensing systems, they
are not suited for accurate laboratory measurements. Moreover,.they are not
gererally considered desirable for remote sensing because of the inherent
difficulties in data veduction.

The use of the refraction of light at the air-water interface is & mbre
accurate technique. In this method a thin beam of light is usually directed
vertically through the surféce and the'éngle that the light beam is refracted
from the vertical is measured. This system was first proposed by Cox (1958),
and he measured the refraction angle by intensity variation. He experienced
some errors due to intensity §ériatic>n due to factors other than refraction
angle and also due to water level changes. Later Prettyman (1969) used
réfréction and recorded the refraction angle with a high speed movie camera.
¥While this technique is accurate, data reduction is tedious for simple wave

systems, and impractical for a random wave field. Recently Tober (1973)

reported a refraction system in which an optical arrangement removed the effect
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of changes in water elevation. However the refraction angle is measured by

a variable density transmission filter, which converts fhe refggction angle

to a change in intensity. Thus any phenomena which results in intensity changes
(spray, water impurities, etc.) will cause errors. This system is accurate |
for wafer level changes up to + & cm,

The present system measures refraction angle directly and thus changes in
light intensity do not affect the data. The-major requirement is that the
distance of the detector from the mean water level must be large compared to
changes in mean water level.

In order to illustrate this the principle of operation of the system is
described. Fig. 2.1 illustrates an idealization of a one-dimensional wave as
tra%ersed by the incident light beam.

The light beam en
which has the instantaneous slope dg/dx = tanﬂl at the angle 81 with respect
. to the surface normal. As a result of refraction the‘beam enters the air at
angle 82 with respeét to the same normal. Angles 0., 82 and indices of refrac-
tion, ny and n,, are related-by Snell's law of refraction, n, sin Bl =n, sin 82.
Since %.and 92 are measuréd from the surface normal, the difference angle
«a=60, -6 or simply the angular deviation from the vertical is measure experi-
mentally. The difference angle o can be related to the angle 91 through Snells
law to give | - A

cot(ei) = (n1/“z) esc @ - cot d. _ (2.1)

The surface slope dr/dx = tanel is simply the reciprocal of equation
(2.1). Hence, by a measurement of a one can obtain the instantaneous surface
slope at the point traversed by the light beam. Equation (2.1) is valid for

any wave slope as long as el is less than the critical angle 0, where total
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internal reflection occurs. In order to measure the difference angle o, one
pelates the offset distance 4 of the refracted beam from the vertical to the
distance ¢ of the distrubed surface to the photodetector as sirply o = tan~1(a/e).
When £ >>-a, where a is the totallvertical surface displacement, L may be
considered constant. The present system requires that £ be constant, and thus
for the method in its present form to be used for finite amplitude waves, the
detector must be sufficiently far away that & >> a. This is the only restriction
in wave amplitude that is inherent in the system. Previous results using this
technique which were reported by Sturm and Sorrell (1973) employed a United
Detector model PIN-LSC-9 photodlode which has an active area of 2.5 mm by 225 mm.
Because of the narrow width of the diode only cne-dimensional waves could be
‘measured. If there is any cross motion the beam refracts perpendicular to the
diode axis and does not fall on rhe active part of the diode. In addition the
length of the diode puts an upper limit on the maximum slope and amplitude
that can be measured The requirement that £ ?> a determines a minimum

dlstance, Em between the dlode and the mean water level- However for a fixed

n’

" vertical refraction angle, ¢, and diode length, there is a maximum length 2 nax’®

for whlch the light remains omn "the active part of the dicde. Thus R is
determined by the diode length/szilmum slope to be measured and & min is determined
by the requirement that ¢ >> a. Therefore there is a restriction on both the
minimum and maximum distance of the diode from the mean water level. ¥While this
arrangement permits laboratory experimerts under some useful conditiens (see for
-example Sturm and Sorrell (1973)) it basically\restricts its use to low amplitude °
one-dimensional wave trains. It is clear that modifications of the system are

necessary if it is to be used in studies relative to remote sensing applications.

The required modification are in the diode matrix used to measure the refraction

—_ _—
angle.
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2.3 The Diode Matrix

A new diode matrix was devised to greatly increase the active area of the
diode system. A large area position semsitive dicde is not presently available,
and even if it were it would be prohibitively expemnsive. The present approach
has been to use an array of diodes, in which each diode gives a signal that
dependa only on the fact that 1igit is incidernt on the diode. The diodes are
arranged in an array or matrix to give the size active area desired, and suitable
electronics employed to give a signal whose voltage is proportional to the
position of the diode upon which the light is incident.

The @iodes utilized are Vactec 8-150-LB diodes which have an active area
of 15cm X 6.5 em. A schematic of the diode arrangement is shown in Fig. 2.2.
Two diodes are placed end to end giving the matrlx a width of 30 om and 18
diodes units are placed parallel to each to produce a length of 40 cm to 100 cm,

iensions the

fb

depénding on the diode spacing. In order to measure siope in 2 dis
refracted light beam is divided by a beam splitter and directed onto 2 diode
matrlces, one which measures p031t10n in the X-leECtan and one 3 which measures
~ position in the y-direction. This arrangement is also shown in Fig. 2.?._ The
-.accurapy_of the measured slope depends only on the number of diodes employed.

For 18 diodes the accuracy 1s-I§ = 5.5% if 211 diodes are used. The spacing
.HXXXHH between diodes can be changed to produce an active area that is as 1ong
-as de51red and thus the system only requires that the array be the minimum
distance, Emin’ from the mean water levela‘ |

These diodes are purchased "off the shelf" from Vartec electronics and
are quite reasonable ($1.00 - $2,00/each).. Thus the diode array presents no
particular problem. However the associated electronics to convert the signal
from the diode to a voltage proportional to its position in the diode array is

quite involved. This has been a major development item for the present investi-
oe gloes _ _

gation and is thus described in detail.
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2.4 Electronics for thg Diode Matrix

The desired behavior of the diode matrix electronic circuit is to convert
the signal output of a single diode to a voltage that is related to that diede's
position in the matrix. The convérsion of many similar outputs to a single
coded éignal is best handled with digital logic, therefore the approach has
been to amplify the diode output to a voltage compatable with a digital legic

converted into

system. By using digital logic elements the signal can be easily/to a binary
code indicating the diodes position. The resulting binary code can be converted
to an analog signal, if desired, by a digital to analeg (D/A) converter. The
circuit for each step is now described in more detail.

- The basic circuit for the diode output is shown in Fig. 2.3, the diode
amplifier circuit. The diode (indicated by PC) output goes to-the‘first stage
of a dual operational amplifier package, ICl. The first amplifier is used to -
amplify the current out of the diode. That is, this amplifier is set up for
current amplification. The amplified current goes to R2 which is of variable
resistance to adjust the—voltage input to the second stage of-fﬁe dual system.
‘.The current output for a fixed incident light intemsity is not exactly the same
for each éiode and R2 is used to compensate for this such that the voitage into
the 2nd étage is the same for each of tﬁe 18 inputs. This voltage goes into one
side of the 2nd amplifier, ﬁhich is wired to operate as a comparator. If the
voltage is above the reference voltage, R, the cutput rises until it is clamped
at ﬁ.O volts by D1, a Zener diode. If the output is less than R the voltage
Eut of the 2nd stage is less than 0.5 volts. RS3 is simply.a current limiting
_resistor. These voltage levels are TTL compatible and thus TTL elements can
be used for the rest of the circuit elements.

A reference level is employed to allow the diode matrix to be used with

—_ o _
high background light levels. That is each diode has some current output when

e by Yt L
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there is background light and there is an additional output from the diode when
the refracted light is incident upon the diode. Thus it was considered desirable
to have a reference signal level, such that there is no signal output until the
refracted light is incident upon the diode. Because the background light level
is high;y variable, it was desirable to have the reference level controlled by
the éiodes themselves. Fig. 2.4 shows the reference voltage circuit which is.
driven by 2 separate diodes at the top and bottom of the dicde matrix. This
eircuit follows the background light level and supplies a reference output for
ICl,the diode comparators. This cireuit has variable feedback through R24 so
the amplification of the background light can be controlled. The circuit is
designed to have a very low ocutput impedance to prevent switching of the
comparators to alter the reference voltage level. This eircuit aépears to work:
quite well and has successfully removed the background from direct florescent
light which oscillates at 120 Hertz.

The output from IC1 has a slow rise time relative to that ‘normal for
coﬁventional digital logic elemeyts. When these logic elements experience a
slowly rising véltage they exhibit instabiiity and oscillate while the voltage
is between the 2 logiec 1evels.m For this reason the output of ICl is directed
through. a current liﬁiting resistor into a Schmitt trigger, IC2. The Schmitt
trigger shapes the output into a fasf rising signal. This signal is then run

in to an 18 input-to 5 bit binary converter made up of NAND gates and NOR gates.

This circuit, including Schaitt triggers is shown in Fig. 2.5, as the 18 input

to 5 bit binary converter. The 5 bit binary output is indicated as outputs A

through E. The choice of 18 inputs is arbitrary as up to 31 diode input channels

can be employed with the 5 bit binary system (1 channel must remain at zero}.
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The 18 input to 5 bit binary converter works for any {ignal input from the
18 diodes, however anytime the signal is removed the output would be 5 bit
binary zero. It is desirable to have the output remain at the last diode
position or logic level until the next diode is turned on by the incident light
beam. This is accomplished by IC6, which is a Quéd?uple Bistable Latch. The
Latch is triggered by any input and holds the signal input until a signal from
ano;her diode is received. Thg circuit is shown in Fig. 2.6, the 5 bit binary
to analog converter. ICS ié a Hex Inverter which inverts the signal 4 times
and is used only to add sufficient delay for the Latch to operate. The result
is that any diode output is held by the Latch until an output from a different
diode occurs. This produces a signal which does not drop to zero when the light
beamris between adjacent diodes.

The 5 bit binary output from the Latches goes directly iﬁto a D/A converter,
IC7, if an analog output is desired. If binary output is desiréd it can be
taken directly out of the Latch, | IC8 amplifies the analog output to the
desired voltage level.

In most cases only an AC signal is desired. That is any DC offset because
the unrefracted light beam is not incident on the center of the matrix is not
wanted. Therefore a separate AC coupling amplifier is used. The circuit is
shown in Fig. 2.7, the output amplifier. The arrangement provides a direct DC
signal and also an AC coupled signal. The operational amplifier,.ICl2, is used
to provide a high inpedance source so AC coupling down to 0.1 Hertz is obtained.

The output from either the AC or DC jack is made of a series of small
steps. This is shown in Flz, 2.3, which is a record of the signal out for a
single wave train. The steped output, which is due to the position of the

probably . )
individual diodes, could /cause errors in &-spectmal analysis of the signal.



For this reason an aﬁalog smoothing circuit is also included in the output
amplifier. This is also shown in the ecircuit (Fig. 2.7). It }s simply ancther
operational amplifier used to smooth the output. Fig. 2.9 shows the DC output
.and the smoothed output for a single wave. The input impedance R16 and feed-
back cépacitanca Ch are variable to produce the desired amount of smoothing.
For the data given in Fig. 2.9 R16 was 100K and cy = .002 ﬁf.

In addition to smocthing, in some cases-it is desirable to integrate the
wave slope to obtain wave height. While there are some scaling problems
associated with obtaining wave height in this manner, see for example Sturm and
Sqrrell (1973), many situations arise when it is desirable to be able to see
wave height versus time, even with the height axis unscaled. This can be
a&complished by changing the input inpedance R16 and feedback capacitance Ch
to values which make the smoothing amplifier and integra Fig. 2

the integrated wave slope measured by the optical system and the wave height
_és measured by a capacitance prpbe. In this application_RlB is 39K and Cu4 is
.0.5 wf,

All circuits were made on printed eircuit board which was etched from
fhotographic templates that aré made in our Laboratory. The 18 input to 5 bitl
binary circuit with Latch and D/A conversion was the most difficult circuit
to wire. A copy of the'template used to make the printed circuit board for this

part of the circuit is shown in Fig. 2.8. A list of all parts used in the

circuit is given in Table 2.1.

2.5 Summary

An optical system to measure random wave slope has been developed and
operated in the laboratory. The system has spatial resolution less than 0.5 mm,
frequencyArésponse greater than lQO Hertz and does not distrub the surface in

any way. Output from the system has been used to measure wave slope and wave
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height for single wave trains, as reported by Sturm and Sorrell {1973).

The system is presently being used to measure the interaction of capillary
waves and gravity waves and to studf the interaction of capillary waves with
mean water cufrents. The only meaningful data for real wave-current inter-
action is to measure the wave slope spectra for a random wave field with

current. The system has been designed to do this specifically and such spectra

are presently being obtained.



Integrated Circuits

Part

IC1

IC2
1C3,1C9
Ich,IC10
IC5

1C6

1C7

1C8

1¢12,IC13,IC1Y

Active Components

Q1
Q2
bl

T PC
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Table 2.1 - Parts List’

" "Number

pA747

SN7413
SN7430
SN7402
SN7U0U
SN7475
MC1406

1A7H1

LouQ3g
4oulo
IN74TA
S 150 LB

" "Function
Operational Amplifier

Schmitt Trigger
8 input NAND gate

'NOR gate

" Hex Inverter

Quadruple Bistable Latch
D/A Converter

Operational Amplifier

NPN power transistor
PNP power transistor
3.9 Volt Zener Diocde

Vactec Selenium photovoltaic cell

Capacitors - All Capacitors 50 WVDC ceramic unless otherwise specified

Capacitors

c1
c2
3,C5
cn

Integration
Smoothing

6,07

Value

100 pf
1l uf
0.1 uf

0.5 puf
0.002 uf

-

10 uf 25 WVDC electrolytic



Resistors - All resistors 1/4 watt unless otherwise specified.

Resistor

R1,R3,R5
R2,R14,R23,R30
RY4

R6

R7

RS

R9,R17
‘R10,R11,R19,R20
R12,R13,R21,R22
R15,R25,R26

R16
- Integration
Smoothing -

R18
R24
R27,R28
R29

Table 2.1 (cont.)

1K

10K Trimpot

1K Tprimpot

b, 7K

6.8 meg.

2 meg. Trimpot
2.2 meg.

10K

1.5K

100 Q

39K
100K

100K

1K Linear Taper Pot
1K - 1 watt

270 Q@ - 1 watt
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Flt., 2.8 PRINTED CIRCUIT BOARD TEMPLATE
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{A) Wave slope frdm the optical system

(B) Smoothed wave slope from the optical system

Fig. 2.9 Wave slope from the optical measuring system (vertical scales are
not identical).
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(A) Wave Height -~ measuped by a capacitative probe

(B) Wave Heightf— by integrating wave slope

Fig. 2.10

Wave height as measured by a wave height probe and by the
optical system (vertical scales are not identical).
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3.. Wave Decay Studies )
3.1 Introduction | /4;2'3?

The investigatién of capillary wave decay or attentuation rates on
mean water currents has been nearly completed. Special attention was
given to two separate conditions {1) when a constant mean water current
is present and thgoretical analysis predicts no energy transfer between
the wave motion and the current, Z.e., there is no‘wave current interaction;
and (2) when there is wave motion with a spatially varying current and wave-
eurrent interaction is expected from theoretical considerations (Phillips,
1966). Generally one expects an exponential decay of wave eﬁergy, and

simple tests of wave decay confirm this. However, with capillary waves

the presence of any film on the surface may contaminate the surface and

although the decay is still exponemtial it may be greatly different than

surfaces. Mefnldrick (1970) as well as Davies
and Vose (1965) have reported results on this effect.

Because the effect of surface films can altér the results the present
work inéludéém;xténsive {esfs fof thé.presénce of suffaée"filmé;m fhié work
indicates when these films can be expected, the effecf of the surface film
on wave damping, and how ;urface films can be aveided in laboratoery
experiments.

Another phenqﬁena occurs in laboratory wave experiments, which is the
occurrence of créss waves or waves_that propagate perpendicular to the
direction of the longitudinal wave under study. These waves are experi-
enced in many wave studies when no currents are present and Mahony
et al. (1972) have reported results from extensive cross wave experiments.

The present study has also experienced cross waves under most conditions.

Moreover the appearance and subsequent behavior of these cross waves is
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not that expected, observed cr predicted by previous work fof ;aves
motion_when no current is present. The preliminary test results indicate
that (1) cross wave current interaction can occur even whén there is no
energy transfer from tﬁe curreﬁt to the longitudinal wave; and (2) the
presence of a current can generate cross waves as the longitudinal wave
decays. Both of these results have important applications in physical
oceanography. The latter is especially important, because it indicates
that a current can break up a regular longitudinal wave train into random
motion even when there is no energy transfer from the current to the

longitudinal wave train.

The importance of both film damping and cross waves in wave decay

" studies with application to physical oceanography has caused both to be

investigated in detail. The results of these investigations are reported

here.

3.2 Studies of the Effect of Surface Films

Numerous investigators have studied the problem of wave damping byl
viscosity and/or surface films. A recent example pf this work is con-.
tained in a paper by Davies and Vose (1965) who measured the damping of
capillary waves on both clean surfaces and.those with controlled amounts
of contaminations. In the absence of a surface film (clean surface),
Davies and Vose observed that the damping of waves resulting from viscous
energy diséipation in the bulk of the fluid could be accurately predicted

by the relationship (one-dimensional)
E =E, exp [(-tv kz/cg) %] (3.1)

where v is the kinematic viscosity, k the wave-number, and cg the wave

5 e
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group velocity. This result is well known and can be obtained directly
from a first order (linear) wave analysis (e.g.; Phillips, 1969). The

wave energy E, also calculated from the linear analysis, is given by

2.2 . .
E = pczz L (8.2)

where p is the fluid density, a the wave amplitude (sinusoidal wave),
and ¢ the radian frequency. in deep water (dw > A/Q)IU can be expressed
in terms of k by the relationship 62 = gk + vk, where g is the |
acceleration of gravity and y the kinematic surface tension. With this

equation (3.2) can be rewritten in a more useful form

2 2 '
E=O(a32<)‘f(l+,g_2)=2.§§_};_)_l(l+s) (3.3)
Yk |

where B = g/yk? is dimensianless. The term ak is the maximum slope of
the wave £ = a sin (kx - ot), Z.e., ak = (dc/dx)ma;; furthermore it
'fo;lows that (ak)?/2 is equivalent to [(d;/dx)rms)]2 where rms is a

""" root-mean square average of the wave slope. For short water waves

() < 1.7‘cm) 8 is less than one and in the 1imit as A + 0, B + O. Fbr

éhoft capillary waves (in these experiments) A < 1 cm and B < 0.3u5

-

equation (3.3) can be approximated by

- g2 |
E = py (a‘; ) {3.4)
s : .

allowing equation (3.1) to be written as

2 , '
E = py (%—3) exp [(-ly k2/c ) x] , (3.5) .
g .
Dr‘ms

which implies
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38 = (&5 exp [(-2v K2/c) x1. (3.6)
X r™T$ms - g

dx —
0

Thus, for short capillary waves, one would expect to observe a wave

with initial slope (dc/dx)o decay at a rate given by -,

2y X2
v
‘g

s - &7

which is the viscous attenuation coefficient. In view of thig, a2 number
of capillary wave decay studies were perfofmed on tap water.. Special
care was taken to minimize the long term growth of a surface film (whose
existence would invalidate the preceeding analysis). This was aécomplished
- by a constant skimming process whereby wéter added to the bulk of the
fluid was removed from the éurface by a slightly submerged sharp-rimmed
standpipe. The rate of surface rﬁnoff was maintained at approximately
10 cc/min. | |

In each instahce‘the experimentally measured decay was exponential
with a logarithmic decrement (attenuation coefficient) ﬂv as given bf
eﬁuation {3.7). The logarithmic decrement is defined as the natural
logarithmic ratio of any two successive wave amplitudes (slopesj divided

is

by the wave length-A = En(ai/ai;l)/l or.simply 4 = 2n(2)/d2 where d2

the distance required for the wave amplitude (slope) to decay to ome-half
the original amplitude (slope). The results of one of these decay trials

are presented in Table 3.1 and Tigure 3.1.
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Table 3.1 Summary of wave conditions for decay
data presented in Figure 3.1

Measured Calculated
T = 232 C Rm = 321.5%
vy = 71.29 em3 /sec? Av = 0.0383
A= 0.733 cm d2 = 18.1 cm
T = 28,21 ms /b = 3.17
c = 25.98 cm/s c = 26.91 cm/s
A = 0,0378 cm™} cg = 36.11 cm/s

Although the surface of the wave tank was constantly skimmed during
all wave decay experiments, the possiblity of a surface film existed.
A practical upper bound on film damping, which has been confirmed by
experiment (McGoldrick, 1970), is that due.to a rigid (inextensible or
close packed) film acting inrconjunction with viscous decay. The
logarithmié decrement for this film is given by Af = (dvk2/8)1/2/cg
or a factor 275/2 RWU2 iarger than 4 due to viscous dissipation alone.
For all waves with Rw > 32, {.e., capillary waves with A > 0.2 mm and
ﬁ.< 103, Af ig greater than Av.r For these experiments the Reynolds
number Rw varies between 200 and 3§O which implies 2.5 <'Af/&v < 3.5;
thus the total decrement AT would be 3.5 Av < AT <L.5 Av. MeGoldrick
(1970) experimentally obtained for unskimmed tap water a total decrement
of A; = 5.77 a, for a wave Reynolds number ﬁw = 450, which is approxi-

mately what one would obtain from rigid film attenuation combined with

viscous dissipation at this Reynolds number.
. —
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Figure 3.1  The measured decay of capillary waves on a static surface
(U = 0) (the solid line is the theoretical prediction)
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These calculaticns demonstrate that film damping, if present, should
be easily observed experimentally in the form of increased damping. The
data, however, show no such effect since within the experfmental ervor
(less than + 10 percent) the measured decay rate was accurately predicted
by viscous dissipation alone. Therefore, in view of thg precautions
taken to maintaiﬁ a clean surface, f.e., constant skimming, and no support
in the decay data for increased damping, it was concluded that little or

no surface film was present.

3.3 Dafa Acquisition Téchniques

The data for these and all following experiments were obtained as
follows. The wave slope was measured as described with our optiecal
systém. Changes in wave slope resulting from small variations in wave
amplitudelwere minimized by averaging over several periods (n > 10} with
a true rms voltmeter (DISA 55D35); wave maker period (1) was measured by
a digital counter (Generai Radio 1911) and static surface tension‘(T')
by a du Noily tensiometer. Wavelength was measured by comparing the
phase of the water wave. to that of the function gemerator (Wavetek 134)
as viewed on a dual fracé.cathode ray oscilliscope (Tektronics 7704}.
The position of tﬁe incident light beam was set at a distance from the
wave plunger where the phase of the measured water wave was judged by
eye to be the same as that of the function generator. The light beam
was then translated a total of five wavelengths (51) and the average
value obtained was chosen as the actual wavelength. This averaging
technique was needed because of the difficulty in determining when
exactly 27 radians of phase shift had occurred; in other words, if the

error in determining the endpoints of the phase comparison is spread
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over several wavelengths, a more accurate measure of A can bé obtained.
This averaging process was justified on the grounds that any small
variation in A over five wavelengths, as a result of a po;;ible change
in phase velocity, would be insignificant compared to an error in phase
measurement , even though the measure of one wavelength might appear more
desirable.r The experimental phase velocity.c was simply calculated from
¢ = A/t and A the logarithmic decrement, measured from the slope of the
éxperimental decay data when plotted on a semi-log scale.

The relationship between radian wave frequency ¢ = 2nf and the radian

wave-number % = 2n/t for waves in deep water can be expressed as

=]
~
H

gk + vk3 . ' (3.8)

Since the phase velocity is related to the frequency and wave number by

¢ = a/k , equation (3.8) gives the phase velocity as
o2 = g/k + vk . . R (3.9)

In addition to the phase velocity ¢, it is convenient at this point to

compute the group €g = %g-. Thus the group velocity is

\ .
Cg = E_iégl;_.[gk + Yk3]‘1/2 (3.10)

The calculated values of phase and group velocity (c and cg, respectively)

were obtained from equations (3.8) and (3.9) using the static experimental

value of surface tension; the wave Reynolds number R = (—iEJ was calculated
v

from the measured wavelength and frequency (o = 2r/t) and the tabulated

value for viscosity at the measured temperature.
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3.4 Capillary Waves on Constant Currents

Following these experiments a study of capillary wave dissipation
on a constant current was undertaken. Modifications to tge system
required the addition of a recirculating pump and a section of the test
channel witﬁ a reduced area 20 cm wide by 2 to 4 cm deep in order that
current velocities as great as 30 cm/s could be obtained from ﬁoderate
flow rates (Q < 2 L/s). The water current velocity was measured with a
‘hot-film anemometer probe (developed by us) powered by a constant-tempera-
tqre anemometer bridge (DISA 55DQ1). Within the resolution of the
anemometer (+ 0.5 cm/s), the velocity préfile in the reduced area test
section was uniform. The usual mechanical wave maker was replaced by a
- pulsed air wave maker which produced waves without physically contacting
fhe water surface. Thié device consisted simply of a narrow slit 2 mm
wide and 20 em long tﬁrough which air pulses, generated by a large
permanent-magnet loudspeaker, could be directed at the water surface.
"This change was necessary becauée a mechanical plunger stagnated the
surface flow and generated a train of ripples, fixed on the oncoming
stream, which interfereé with the capillary waves under study.

With the modifications described above, wave decay measurements
with constant velocity currents directed against the direction of wave
propagation were carried_out. In a majority of these trials, however,
increased cross-wave content, which-became more severe as one moved away
from the wave generator, was observed. In addition, the ratio of cross-
wave slope to progressive wave slope at any fixéd point remained nearly
constant over a wide range of wave generator amplitudes. This feature

is not observed in wave decay studies on a static tank where a neutral

Tt aptes
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stability effect was observed; That 15, there exists a wave generator
amplitude whiéh would not sp;ntaneously generate cross-waves but would
sustain (and amplify) externally ihtroduced cross mede distrubances.
Below thislcritical (and frequency dependent) asplitude cross-waves
cannot be maintained, while above it cross-waves are always present.
Tﬁe existence of these points of neutral stability has been observed by

other investigators and several theoretical and experimental papers have

been written about cross-waves.

One of the most comprehensive studies to date is presented in a
two-part paper by Mahony et al. (1972). Mahony surveyed pre?ious theories
and propesed that there are two modes of cross—wave generation one near
and another more distant from the wave generator, while Barnard and
Pritchard conducted experiments with cross-waves generated by a mechanical
(flap type) wave generator on a still (zéro current) surface. These
experiments document a number-of characteristics of cross-waves, including
neqt?al stabilities and gfowth and decay rates. From this eéperimentalist's

viewpoint, probably the most disturbing feature of cross-waves as reported

by these investigators is that cross-waves are not stationary in either

“time or space. Rather they grow and decay at slow rates with time constants

on the order of 75 seconds when the wave generator is produéing longitudinal
waves with a fundamental frequency on the order of 5 Hz.

When a mean current was present, no condition of neutral stability was
observed. It was first hypothesized that the pulsed air or pneunatic wave
generator was the source of this increased cross-wave content. This
hypothesis was tested experimentally by measuring the crosé-wave content
(in two separate trials) of two identical trains of capillary waves

(1t = 35.90 ms, A = 0.928 cm) on still water, one generated by the mechanical
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plunger and the other by the pneumatic generator. The amplitude of each
generator was adjﬁsted to give the same rmg slope at a distance of 5 cm
from the plunger and the variation In rms slope of the longitudinal wave
was measured in the transverse direction (parallel to the waverfront) as
a-function of position from the wave generator. The yesults of these
measurements, with the maximum transverse variation in wave slope
expressed as a percent of the total wave slope, are presentad in Figure
3.2, Initially the mechanical generator exhibits a lower percentagé éf
slope variatipn in the transverse direction; however, after about 10 cm
the percentage of cross modes from either of the generators is essentially
the same with an equilibrium value between 30 and 40 percent. It is
concluded, therefore, that the cross mode contenf initiated by either of
the two generators is comparzble, and that the increased cross mode wave
content cobserved when a mean current is present cannot simply be attributed
to the pneumatic wave generator. Rather it appears as if the current
contributes to the'growth of cross modes by some mechanism which is not
presently understood. Figure 3.2 also presenté a élot of the growth of
oross modes when a current of -8 cm/s is present. The initial growth
rate is nearly linear with distance with a final equilibrium valué

approximately double that observed on a static surface.

3.5 ﬁave Decay Measurements on a Constant Current
The apparent rate of wave decay is related to the cross mode content.
ﬂhen this content was low, the measured decay rate was'thaf predicted by
viscous dissipation alone. The decay was exponentiai with a logarithmic
decrement hv = 2v szcg.based on the actual (local) wave-number (¢f.,

Section 3.5) and group velocify. A typical plot of one such run is
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presentedrin Figure 3.3 with accomp;nying Table 3.2. For the given

conditions one coﬁcludes that film damping is not present by arguments
previcusly Outlined; Z.e., predicted film damping for Rmn= 210 would
be on the order of 2.5 times as great-and the data do not suppert this
fact., When‘cross mode content is high, the apparent decay rate is not

exponential throughout. Rather, the decay rate is initlally exponential

in the vicinity of the wave generator, but about 20 to 30 wavelengths

from the wave generator the decay data become erratic with large

variations from the initial exponential decay rate (Figures 3.4, 3.5).
However, from an observation of the data it appears that a lateral

transfer of the progressive wave energy takes place; that is, an increase

. in energy at one traverse location (at a fixed distance from the wave

source) is balanced by a decrease at another.

Table 3.2 Summary of wave conditions for decay data
presented in Figure 3.3

Measured . Calculated
T = 24,5°C Rm = 210.8
vy = 71.3 cm3/s2 A, = 0.0u1 em™l
A = 0.986 em d2 = 16.9 cm
T = 80.42 ms Af/Av = 2.56
c = 12.26 em/s ¢; = 24%.641 em/s
= -1 = - =
Aexp 0.0461 com u cy c 12.37 cm/s

U = 11.5 em/s
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Consequently,‘spatial averaging of the decay data in the transverée
direction removed the individual peaks and troughs and resulted in a
smooth exponential decay. In practice this was accomplisﬁed by measuring
the wave slépe as a function of distance from the wave generator at five
or seven transverse locatlions across the tank. (Usually this was doﬁe
symmetrically about the centerline). The tabulated values for slope at
each position x from the wave generator were then averaged (arithmetic)
to obtain the spatial average which was taken as the representative value
of slopé, and hence energy, at this value x. The results of one such
tpial are presented in Figures 3.4 and 3.5, which illustrate the peaking
described above, and the results of spatial averaging of these data are

.given in Figure 3.6 and in the accompanying Table 3.3.

Table 3.3 Summary of wave conditions for decay
data presented in Figure 3.6

Measured o 7 Calculated
T = 2400 : R = 26%
y = 71.4 cm3/s2 a, = 0.0355 cm™}
A = 0.026 cm d, = 19.5 em
T = 54,59 ms Af/Av = 2.87
¢ = 16.96 cm/s c; = 25.04 cm/s
A = 0.038 ' U=c. - ¢ = 8.08 cm/s
exp i .

(=]
n

8 cm/s -

As a result one must conzlude from these experiments, including the

special case where U = 0, the following: (1) in the absence of surface

- ' i
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£ilms the Kelvin dispersion eguation (3.9) accurately relates phase
velocity (or frequency) to wave-mumber; and, (2) the attenuation of
waves occurs as a result of viscous dissipation as predic%ed by
equation (3.6). In none of fhe cases, however, was energy transferred
either to or from the current into the progressive (longitudinal) waves.

However, Figure 3.2 indicates that energy is transferred from the current

into the corss-waves or transverse modes,

3.6 Capillary Waves on a Variable Current

From theoretical considerations it has been suggested (Phillips,
1966) that wave energy transfer to or from a mean current, <.e., wave-
current interaction, should occur whenever waves propagate through regions
where variable currents exist. This means that wave—currént.interactions
depend on current gradients rather than simply the existence of a current.
The previous experiments on constant currents support half of this argu-
ment, namely, when no current gradient is ppggent_po_wavefqgfrent inter—
action occurs. To verify the second half of the argument, wave decay
studies on a variable current were undertaken. In this section the
results of the study are ﬁresented.

The measufement of capillary wave decay on a variable current
proceeded in a manner indenticai to that of the previous constant current
experiments with the exception of wavelength measureﬁents. These were

obtained indirectly as follows. From equation (3.8) one obtains
2 _ - 3 '
ag = (kg ¢g) gkg + Yky (3.11)
where kg4, ¢4 and g, are the wave~number, phase velocity, and frequency .

of waves on a zeroc current.



- 148

From this it follows that

kg = (v + /3 4 (s - p)V/3 ) (3.12)
where |
r2 = (o*/T'2)/4 + (g/7")3/27,
and |
s = o2/2T" .

The dispersion equation (3.9) can be used with an equation requiring
the conservation of waves (e.g. Phillips, 1968) which for steady waves

on deep water reduces to

o, = constant = koco = ke = k(ci + V) _ (3.13)

These equations (3.9) and (3.13) are then sclved simultaneocusly for wave

number resulting in a cubic eguation of the form
3 2 N o=
(kg/k)*  + a; (k/Kk)° + ay(kg/k}) +a =0,

where the coefficients, a,, a5, and aq depend only on the known quantities
U, Cq» ko, vy and g are given by

20c, + g/k .
| = e ____..-._--——-------O 0 = 2 = 2
a; ( CS Y, a, (U/co) s 84 Ykofco .

This equation is solved explicitly for k resulting in an expression of

the form
k =k (kog Cos U) Yo g) . : (3-1“)

Thus, for each value of current U, one can obtain a corresponding value
for k and hence for the wavelength X.
FigureA3.7 is an experimentally determined plot of the current used

in the following wave decay study. By convention, the current is
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considered negative since it opposes the direction of wave propagation;
also, the magnitude decréases linearly as one moves away from the wave
generator (located at x = 0). )

Waves with a period of 92.99 ms (10.73 Hz) were generated on the
-17 eam/s current; the waves propagated through the variable current region
and were finally dissipated in the -5 com/s constant current regiom. ‘The
measured decay of these waves is presented in Figure 3.8.

The data presented are the spatial average of seven traverses of
the test section as cross wave content was high due in part to the fast
current and relatively short wave perled.

The dashed line on.Figure 3.8 represents the expected decay from
viscous dissipation alone. This was obtained as follows. At each data
point the wave-number k was calculated from equation (3.14) and the
measured current velocity. This iocal wave-number was then used to
compute the viscous decay decrement Av at each point; the dashed line is
the tangent of these local decay rates. ‘It can be seen from the figure - -
that the initial and final decay rates (slope of the dashed line) aré
tangent to the data. This is consistent with the previous findiﬁgs for
wave decay on constant currents since at either end of the variable
current section constant current conditions exist. However, the over-all
prédicted rate of decay isltoo slow to explain fhe decay observed in the
variable current region. |

An analysis which includes the effect of a variable current on the .
wave energy is given by Phillips (1969). For a one-dimensional train of
waves propagating in the x direction, he shows that the conservation of

the fluctuating component of the wave energy can be expressed as

/5/

=
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; (3.15)

o) e
x|c
i
)

m

d
EE'[E (U + cg) J+s

where E is the wave energy, U the current velocity, Cg the wave group
velocity, Skx the radiation stress in the x direction, and & the rate of
energy dissipation per unit volume due to viscosity. From a linear

analysis, he also shows that e = 2uyk? (ak)? = wk’E and

R 3+ B | - 2 . . . -
8% = E (ETIw;—Ej-) where 8 = g/vk? (introduced in equation (3.3)) is

a dimensionless parameter. For this experiment 8 feaches a maximum value
of 0.98 which implies that the acceleration of gravity is no longer
negligible and must be included in the analysis. As a consequenée the
radiation stress S and the group velccity ég are expanded in a powér
series with B as an ordering parameter. Neglecting all but the linear
terms, one obtains fifst order perturbation relaticons for Sxx and cg

given by

.
1

E (3/2 - 8) - T T (s

and

C

. = G- B/2) </2. ~ (3.16b)

Thus equation (3.15) can be written as
4 [E(U + (3/2 - 8/9)e)) + [(3/2 - 8) + WK?T E = 0, (3.17)

Equation (3.17) can be put in the form

dE . _ :
it p(x) E =0, (3.18)

where

p(x) = [(5/2 - B) %§-+ (3/2 - B/u)‘§§—+ uvk21/TU + (3/2 - B/w)e] . (3.19)
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Equation (3.18) has the general sdlution

E = B, exp (- fx plw) dw - ‘ | (3.20)
0

where EO is the wave energy at x = 0 and p{x) represents a generalized
décay coefficient for capillary waves on a current. It can be reaaily
seen from equation (3.19) that when the current is constant dU/dx and
de/dx are zero, and p(x) reduces to the constant uvk2/(U + (3/2 - é/u) c).
Since capillary wave energy is proportional to rms slope squared, the
decay decrement for wéve slope is half the above or Av where.
U+ (3/2 - B/4) ¢ = cg , the group velocity.

For a variable currént (3.19) is a function of U(x) which must be

determined experimentally. In view of the difficulty in obtaining a

compact functional form for equation (3.19) and the approximations

. implicit in equation (3.17), no closed form integration of equation

(3.20) was attempted. Rather, two graphical technigues were employed.

In the first case p(x) was plotted on a Cartesian scale, and the integral

of p(x) was simply obtained by counting squares under the curve. In this

mapner a table of values for the definite integral IE pl(w)dw was obtained.
Subsequently, E/EO from equation (3.20) was evaluated at each data point
and plotted on a sémi~logarithmic scale.

Within a constant, the results of these caiculations are presented

as the $olid line in Figure 3.8. Alternately, p(x) was evaluated at the

- values of % corresponding to each data point. The value of p(x) thus

obtained corresponded to the energy logarithmic decrement or simply the
slope of E(x)/E, at each data point. Thus, the solid line in Figure 3.8

can also be interpreted as the tangent to all the predicted decay rates
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obtained from p(x). 'Table 3.4 summarizes the calculations involved to

obtain p(x) given the experimentally measured values for the current.

Table 3.4 Numerical calculations involved in the evaluation of
equation (3.19)

Ucmfs cifcm/s g/yk? = B uvk?  du/dx de/dx p{x)  2&n2/p(x)
=17 25,879 0,238 2.18 0.1 -0.9038 0.1119 12.3%9
-16 25.425 0.268 1.93 0.666 -0.25 0.1496 9.260
=14 24,625 O.SAl l.52 0.6686 -0.236 0.1258 11.00
~12 23.90 0.434 1.197 0.666 -0.19 O.lDB 12.829
-10 23.496 0.550 0.943 0;666 —0.117 0.0%46 14.648
- 8 237175 O;GQB 0.746 0.666 -0.10 0.07%8 17.38
-6 23.012 0.875 0.594% 0.666 -0.011 0.0706 19.861
-5 22,987 0.977 . 0,531 0.125 +0.0357 D.0665 20.86
- 5. . .22,887 - 0.977 -..0.531 0.0--- .- ..0.0 .. 0.0222_..._.62.30.. .

From the data in Figure 3.8 it can be seen that the decay rate

throughout the variable current region is nearly constant, although the

wave-number (k) and the current velocity (U) decreases rather rapidly.

This effect can be explained by wave-current interaction theory through

an examination of equation (3.19).

du
terms (5/2 - 8) = ° (3/2 -
local group velocity, controls the rate of wave decay.

of the variable current region where U = -16 om/s, the ratio of

It can be seen that the sum of three

B/4) %ﬁ- , and 4vk?, jointly divided by the

At the beginning

attenuation resulting from viséosity to that arising from the gradient

L
[P SRR
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terms, e, R, = WWkZ/[(5/2 - 8) S2+ (3/2 - g/4) §2 1 is

- 1.93
vg 1.13

rate of decay is controlled by viscous dissipation. As a current

= 1.71, so that for the shorter wavelengths encountered the

decreases, however, the wave-number decreases such that at U = -12 cm/s,
vg = %%%%—= 1.08 which implies that the gradient terms account for
nearly half of the apparent rate of decay. For u = -6 em/s, the ratio
vg = i:ggg = 0.558 and the effect of viscosity is oyershadowed by the

gradients. The net effect is that the sum of the three terms (5/2 - B) %%,
(3/2 - B/4) %ﬁ-, and #vk2 remain roughly constant, and hence the rate of
wave decay also remains constant. The data in Figure 3.8 support this
cbservation.

It is important to note, however, that the increased rate of decay
from the comhined pffpctq of wave-curren nt interaction and viscous dissipa-
tion is actually apparent rather than real. That is, the action of the
radiation‘stress is to transfer (conservatively)'energy from the wave into
the current rather than to dissipate it as is the case witﬁiﬁiscosity.
This can be shown for the case of pure capillary waves, f.e., B = 0, by
considering equation (3.17) without the term (4vk2) resulting from viscous

dissipation, namely,

S [E (U +3/2 ¢) ]+—-E%= 0. . (3.21)

For pure capillary waves, equation (2.12) reduces to
e =yx® . (3.22)

Combining equation (3.22) with (3.10), one obtains
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3
e s & 10, : (3.23a)
3 2
c. ¢ -
0 0 g

from which it follows that

240 _ de | |

c I 2c (U + 3/2 ¢) ix - (3.23b)
Multiplying (3.21) by ¢3 and combining with (3.23b), one obtains

o¥ S [E(U + 3/2 )] - 3c2E(U + 3/2 ) g-g- =0 (3.952)

or

g; [EQU + 3/2 ¢)/c3] =0 . (3.24Db)

Thus, without viscous dissipation

E(U + 3/2 c) -
3

const = %- (3.25)

C

% &

where subscriﬁf_fbjwindicafes conditions when U = 0.
For a single train of capillary waves, E = %-py{ak)z (from equation

- (3.3)). Substituting into equation (3.25) results in

?
% 2 ]
(ak)? _ 02 - = B ) (3.26)
(a0k0)2 ASE 3 or EO
o * %

E/EO as a function of U/c0 is plﬁtted in Figure 3.9. It can.be seen that
the wave energy E decreases as --U/cO tends towards zefo (U/cO =_0). There-
fore, the energy is not dissipated as a result of the wave-current inter-
action. Rather it is simply transferred from the waves into the current.

Thus, the vertical distance between the sqiid and dashed curves in
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_a? B
2 B
(aoko) 0

.1

Figure 3.9

Calculated wave-current energy interaction based on
current velocity (the curve is a plot of egquation
{3.26))
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Figure 3.8 is a measure of the total energy transferred from-the waves
into the current. Ideally, if the starting current conditions could be
re-established, this porticn of the energy would be retur;ed to the waves.
If is qoncluded tﬁat this detail investigatiom of wave-current
interaction with variable currents confirms vecent analytical predictions,
that is the energy transfered from the wave to the current is exactly
that predicted. However, it is probably more important to mote that in
a variable current the cross waves interact with the current to gain
energy while the longitudinal waves interact with the current to loss
energy. In physical oceanography one is concerned with the eventual
wave state after propagation through a variable current region and these
experiments that after a short period in many cases the cross waves will

be almost as large as the longitudinal waves. This is considered to be

quite an important cbservation.
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4. Experimental Studies of Capillér&—Gravity Wave Interaction

4,1 Introduction

In almost all remote sensing techniques a large part of the data (usually
backscatter at some angle) occurs or is caused by the short wavelengfh waves on
the ocean surface. Therefore attention must be given the shorter waves and how
they effect the data that is obtained. Since tﬁese waves have much shorter wave-
lengths than the longer gravity waves, they may not be uniformly distributed cn
the longer waves, but may collecf at the peak, trough, front or back of the gravity
wave. In addition since the waves receive energy and decay at different rates,
££eir relative amplitudes may change as the wave system propagates. Both of the
factors, non-uniform distribution of the capillary waves and relative amplitude of
the waves will alter the signal obtained by-the sensing system. In the ocean there
is, of course, a spectrum of wavelengths from the long gravity waves to the shorter
capillary waves and thus we are considering the effect the gravity waves will have
on the capillary.waves. Any changes in the short wave distribution or amplitudes
will-alter a return signal from these waves. o o S o

In order to investigate this a simplified experiment was devised and undertaken.
This was to generate a train of gravity waves at a éingle frequency or wavelength
and superimpose on these long waves a uniform series of much shorter wavelength
capillary waves (also at a single higher frequency). The composite wave system was '
measured near the plunger and then measured at various positions of increasing
distance from the piunger in an.effort to determine how the capillary waves inter-
acted with the gravity waves. This dgta Qas analyzed to determine any non-uniformitieg

in the capillary wave distribution and to see if any energy was being transfered
between the wave systems. The experimental results are plots of composite wave height

at various distances away from the generation source.
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u.é Experimental Technigue

The waves were generated by a single plunger fha¥ was driven by a signa;
which was the addition'of the‘two desired waves. Two sine wave generators were
used, their signals added electromically and amplified to drive a large permanent
magnet lopdspeaker. The Spéaker was connected to a plunger which was used to
generate the waves. Figures 4.la énd 4.1b show a typical signal feed into the
amplifier to drive the plunger. This particular signal has a lower frequehcy of
4 Hertz for the long wave and a frequency of 18 Hertz for the short wave. This
signal record shown in Figure “.1b is .51 sec. in duration and the longer scale
Figure 4.la is 1.25 sec. in duration. Note that the amplitude of the capillary -
waves is considerably larger than fhat_for the gravity waves, the reasen for this
will be discussed later. This is the signal.used to generate the dafa shown in
- Figures 4.3a to 4,31, Figure u.é illustrates the speaker and plunger arrangement
used ﬁb‘genérate the waves. In order to assure that the plungef accurately
reproduces the input signal to the amplifier a positive feedback circuit was
_employed. Figure 4.2 also shows this feedback eircuit.

“VAfter generation the waves were measured by .the optical wave slope system
that we have developed, Sturm and Sorrell (1973). This system used the new
electronic detection system and diode matfix that has been recently developed and
was described in sectién two (2) of this report. This system measures wave slope
directly and the signal must be integrated to provide wave height. The integrator
used to accomplish this is also described in section two (2) and
é discussion of the complete method may be found in the paper by Sturm and Sorrell
(1973). One consequence of this procedure is that the amplitude scale is not the
same for both waves, but varies directly with the phase speed of the wave. This

presents no real error however, as the phase speeds are known and if the absdlute

JE— -
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ratio of amplitudes is desired, they, can be ;asily scaled. Moreover for the
present experiments the amplitude scale was varied in order to show the waves as
clearly as possible. Therefore, for all of the data presented, ohly the relative
amplitude of the wave is presented and no absolute amplitudes are given.

Both.waves are.thus generated at the plunger and are observed at various
- distances away from the.plunger. The waves require some distance from the plunger
to reach equilibrium before viscous decay starts. This distance is greater for
the gravity waves than the capillary'waves, and the intermediate position of 7 cm
f?om the plunger i1s the first observation point in all cases. By the time the
capillary waves reach thié distance there has been some decay, however the gravity
waves have experienced no amplitude loss. This is the reason theKPlunger motion
for the capillary. waves (Figures 4.la and 4.1b) is larger than that for the longer
waves.

A complete discussion of the relevant theory is present in the previous section
of the report. However some of the experimentally significant results of the theory
are given here. -Basically the theory predicts a stronger interaction,-that is, the
gravity wave will have a greater effect on the distribution and amplitude of the
capillary waves, when the phase'épeed of the gravity wave C, is either equal to the
phase épeed of the capillary wave C2 or when Cl = %—Cz . The greatest effect is

expected when Cl = g-cz because the energy transfer is at the group velocity and
3
7 %2

wavelength, frequenc} and phase speed for a range of capillary, gravity and

the condition Cl corresponds to equal group velocities. Table 4.1 gives the

capillary-gravity waves and is used to facilitate comparison of the wave systems.
It is evident from this table that very high frequency capillary waves will be
required to meet the condition C; = %—CQ . The consequences of this will be

considered later.



Wavelength

A (cm)

30
20
15
10

N W F o @

1.8
1.6
1.4
1.2

Table 4.1

Wavelength, Frequency and Phase Speed in the Range

of Waves Considered

Frequency
f (Hertz)

2.28
2.80
3.24
4.01
5,51
5.90
6.80

. 8.30
11.6
12.8
4.4
16.6
19.8
21,7
32.8
484
86.3

131.3

Phase Speed

c {cm/sec)

 68.6
56.1
48.7
40.1
36.1 .
29.5
27.2
2.9
23.2
23.07
23.07
23.26
23.74
24.65
26,26
29.1
3y.5
39.4
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2.3 Experimental Results

As previously mentioned the experimental results are plots of wave height
verses time at increasing distances_from the plunger. All déta starts at an
initial position 7 e<m from the plunger. Data from 3 separate conditiors is given.

These conditions are:

Run #1 Graﬁity or long wave Capillary or short wave
Al = 10 cm A2 = 1.6 cm
fl = 4 Hertz f2 = 18 Hertz
C; = 40 em/sec C, = 23.9 cm/sec

Run #2 ' Gravity or long wave Capillary or short wave
Al = 5.1 cm : 12 = 1.1 em
fl = 6 Hertz f2 = 24 Hertz
c, = 30 cm/sec ‘ C, = 2u.6 cm/sec

Run #3 Gravity or long wave Capiliary or short wave
ll = 5.} cm ;2 =-0.86 cm

) 7 fl = 6 Her?z 71 fz_f 30 He?tz

¢, = 30 cm/sec 02 = 25.7 cm/sec

The data for Run #1 is given in Figures %4.3a to 4.3i, for Run #2 in Figures 4.4a

to Wb4e and for Run #3 in Figures 4.6a to 4.6c. A comparison of the present optical
wave measurement system with a cdnventional wave height probe can be obtained from
Figures 4.5a and 4.5b, as these data (Figures %.5a and 4,5b) were taken with a wave
height probe. The results are ﬁow discussed in more detail.

Run #1

The data were obtained at the following positions from the wave source (plunger).

L.3a 7 cm 4.3e 27 cm
4.3b 12 cm y, af 32 cm
4.3c¢ 17 cm 4.3g 37 em’
— ——
4,3d 22 cm 4.3h 42 cm

4.31 47 cm



The wave system data in 4.3a, 4.3b, and 4.3c'shows an even distribution and lends
confidence that the waves were generéted as expected. In Figure 4.3e there is
some evidence that the waves are grouped more in the long wave trough, however
4 3f shows the waves grouped more on the long wave peak. Figure 4.3g and 4.3h
show a similar result. At a position #7 em from the plunger (Figure 4.3i) the
capillarf waves have almost completely decayed away. The capillary or short waves
decay much faster with poéition than the long waves because they have traveled
many more wave lengths in distance. This is another reason the capillary waves
were generated with larger relative amplitudes.
“  The apparent shift in position of the capillary waves from the gravity wave
trough to peak and back is believed to be caused by the difference in phase speed
of the two wave systems. By the time the group of capillary waves propagate to the
next pﬁsition the gravity wave has propagated approximaﬁely 3.4 om farther than
the capillary wave. This places the small waves‘at a different position on %he
wave

gravity/, Indeed this illustrates that unless the gravity wave is sufficiently long

for the capillary waves to die out between crests, a group of short waves will

~ change position on the long wave unless the phase speeds are equal. The présent
wave tank permits wavelengths up to about 12 cm before tank size becomes a problem.
Thus the phase speeds must be equal or else a grouping of short wéves will shift
‘pelative position on the long wave.
Run #2

The figures show data obtained at the following pesitions from the wave
generation source.

4. La 7 cm 4. ud 17 cm
4.4b 12 on - 4.l4e 22 cm
L.4e 17 cm
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Both the long wave and the short wave are at higher frequencies in an attempt to
generate waves with the phase speed; more nearly equal. The main feature here is
the rapid decay of the capillary waves, and by the time they have. traveled 17 em
from the plunger they have nearly vanished. Figure 4.4d is with an expanded time
scale to verify this. Data given in #4.4e, which is 22em from the wave source,
containsvvirtgally no short waves. |

Because detection of.the short waves is marginal at a positiom 15.5 cm from
the source, (Figures 4%.4c and 4.4d), this data téﬁen by the optical system was
compafed with that obtained from a conventional wave height probe. Figure 4.5a
and Figure 4.5b (expanded time scale) shows data at identical conditions of Run #2 -
155 em from the wave source. These data were taken with a capacitive wave height
probe which had a probe diameter of 0.25 mm. in these data the capillary wave is
complefely obscured by the probe. This shows the high resolution of the optical
system and the inherent dif?iculties assoclated ﬁith using a prohe system to measure
capillary waves.
Run #3

This condition has an even higher capillary wave phase speed in an attempt to
determine if the waves group on.the long wave peak or trough. Data are shown for

three positions:

4,63 T om
4, 7b 12 em
4,6¢ 17 cm

Figure 4.6a demonstrétes that the waves are generated as desired and that there is
aniple capillary wave content. Figure 4.7b shows considerable capillary wave decay,
and at a distance 17 cm from the wave source the capilléry waves are no longer
observable. This demonstrates the inherent problem with attempting to generate both

a long wave and a short wave with the same phase speed. As the short wave length is
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(b) Trace duration = 5.1 sec
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' Figure 4.1 Input to wave generator Run #2, fi =4, f2
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(a) 7 cm from wave source

{b) 12 cm from wave source

{(c) 17 cm from wave source

Figure 4.3 Data from Run #1
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(d) 22 cm from wave source
(e) 27 cm from wave source f
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i
t
|
H
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g
;
(f} 32 cm from wave source
Figure 4.3 (cont.) Data from Run #1
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(g) 37 cm from wave source

(h) u2 cm from wave source

(i) 47 cm from wave source

Figure 4.3 (cont.) Data from Run #1

- .
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(a) 7 cm from wave source

I M@ﬁ

(b) 12 cm from wave source |

(c) 15.5% cm from wave source

Figure 4.4 Data from Run #2
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(d) 15.5 cm from wave source
expanded time scale

{e) 17 cm from wave source

Figure 4.4 (cont.) Data from Run #2

fon iRy



173

{(a) Trace duration = 1.28 sec

{(b) Trace duration = 5.1 sec

Figure 4.5 Data from wave height probe Run #2, 15.5 cm from source



-

(a) 7 com from wave source

{e) 17 cm from wave source

Figure 4,6 Data for Run #3
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reduced in order to increase the phase speed, the wave decays very rapidly. If

an attempt is made to produce shorter long waves with lower phase speeds, the
distinction between long and short waves is lost. -
4,4 Summary and Cenclusions

A simple ekperiment wvas undertaken to investigate the interaction between
long gravity waves and much shorter capillary waves. The experiment was to
generate both wave systems and to observe the effect of the long wave on the shorter
capillgry wave. Run #1 shows the difficulty in analyzing the results when phase
speeds of the two wave systems are different. Run #2 indicates the rapid decay of
the gshorter waves with inecreasing fregquency and compares thé present optical s&stem
for data acquisition with the conventionsl wave height probe. This illustrates the
necessity of using the optical system. Run #3 verifiés the rapid decay of high
frequenéy capillary waves and shows that it is probably not possible to generate a
distinct long wave and short wave with the same phase speed and have the composite
wave system last for any appreciable length of time or distance of propagation.
.- -~ -For these ohservations it -appears that-a system.of wind driven waves, or
possibly plunger and wind driven waves are necessary for the experiments. If the
‘short waves are wind generated, then it should be possible to continuously add energy
to the short waves so they do not decay or at least do not décay so rapidly. With
,. this approach the long waves could be plunger generated and the short wave generated
and sustained by the wind. Under these conditions it should be possible to generate

and measure long waves and short waves which have the same phase speed.
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5, Preliminary Wind-Wave Measurements

5.1 Introduction

| The previous sections present the results of measurements éf waves génerated
by a wave maker or plunger. Waves gengrated in this manner have definite periods
or wave lengths, and thus it is meaningful to describe the wave by these charac-
teristics. However, wind geﬁerated waves are random and thus the only meaningful
data are some form of wave statistics or average properties of the waves. Because
radar backscatter is primarily influenced by surface roughness and also because
sthe high frequency components are important, results in the form of wave slope
spectra are the most useful. These data can bé obtained with the optical wave
measurement system described in‘Part‘Q of this secti@n.. Preliminary résults of
wave slope spectra for different conditions of-currenﬁ and wind speed are given
in Figures 5.1, 5.2, 5.3, and 5.4; Thesé results demonstrate a strong relation

between current and slope spectra.

5.2 Data

The data for the accompanying figures was obtainedfiﬁﬁgﬁgmﬁih&;waﬁémféﬁEHSt T
N. C. State Uniﬁersity. This tank is 2 ft. x 3 ft. in cf&ss section and hés a
fan capéble of generating winds to L0 ﬁ/sec. In addition a pump system has been
installed to produce mean water currents. This system permits the gemeration of
wind waves and the investigation of changes in wind-wave statistics due to a
éurrent. |
The data weré obtained by recording the output of the optical wave measure-
'ﬁent system on magnetic tape. The tape system has a [M record and playback mode -
so that low freguency waves can be recorded. Data are recorded for a length of

time sufficient to obtain the desired amount and then played back through an

audio spectrum analyzer. Because the analyzer requires frequencies above
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20 ﬁeriz (audio frequency} the tape speed is increased by a factor of 16 when
played back into‘the spectrum analyzer.r This gives a low frequency limit of

1.25 Hertz in the slope spectra. The output of the spectruﬁ analyzer ié then
recorded on an.x—y plotter. The data given in 5.1, 5.2, 5.3, énd 5.4 are the
analyzer output as plotted. These spectra shows considerable fine scale sfrnc—
true., In order to get a better picture of this structure several spectra are
plotted on top of each other. This shows the repeatibility of the spectra and
also shows if a particular-fine structure characteristic of the spectra cor
random. These slope spectra are basically plots of the relative magnitude of

the RMS slope within specified frequency bands. They are taken with a winﬁ

speed of 2 m/sec at zero water current and with a mean water current of 10 cm/sec
in the direction of the wind. Figures 5.1 and 5.2 are ﬁave slope spectra down
-the channel, that is, slope spectra in the direction Qf the wind or current.

The shift of the spectrum is in quantitative agreement with the theory developed
by Huang, et. al. {1972}. Generally it shows that a positive current shifts the
wave energy toward the -lower frg{&éncieSrk The data given-in Figures 5.3 and 5.4
are slope épectra across the channel. These have less energy content and, in
addition, both the downwind and cross wind spectra with the positive current show
less energy transfer from the wind than when there is no current. Therefore it

is not meaningful to compare the relative total energy content of the two spectra.

The data show the expected strong dependence of wave spectra on current.
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Figure 5.1 Downwind slope spectra
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Flgure 5.2 Downwind slope spectra
. Wind = 2 m/sec Current = 10 cm/sec
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Plgure 5.4 Crosswind slope spectra
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